
Extracting Student Models for Intelligent Tutoring Systems 

John C. Stamper1, Tiffany Barnes1, Marvin Croy2 
 

Department of Computer Science1, Department of Philosophy2 
University of North Carolina at Charlotte 

9201 University City Blvd., Charlotte, NC  28223 
{jcstampe, tbarnes2, mjcroy}@uncc.edu 

 
 
 

Introduction   

Intelligent Tutoring Systems (ITSs) that adapt to an 
individual student’s needs have been shown to be 
extremely effective, showing significant improvement in 
achievement over non-adaptive instruction (Murray 1999). 
The most successful of these systems require the 
construction of complex cognitive models that are 
applicable only to a specific tutorial in a specific field, 
requiring the time of experts to create and test these models 
on students. In order to achieve the benefits that ITSs 
provide, we must find a way to simplify their creation.  
Therefore, we are creating a framework to automate the 
generation of ITS student models. The goal is to provide a 
simple way to allow developers of computer-based training 
(CBT) to add adaptive capabilities with minimal work 
while still maintaining the effectiveness of a true ITS.   

Background and Related Work 

Student and domain knowledge models are central tools for 
adaptation, but creating these models is the bottleneck in time 
and effort in creating ITSs. One system, REDEEM, allows 
teachers to apply their own teaching strategies to an existing 
CBT system (Ainsworth 2003). This can be done quickly 
and without the need for computer experts, and its 
performance lies between that of a non-expert human tutor 
and that of the best ITSs, which can achieve a 1-sigma 
increase in student scores. An ITS framework, known as 
CTAT, has also been successfully used to lessen the 
development time of an ITS by allowing a user to input 
example problems and the system generates the rules 
(Aleven 2006). Other systems, including ASSERT, have 
replaced the need for expert model design, using theory 
refinement to learn student models from behavior, and 
generate feedback for remediation (Baffes 1996). Although 
these systems are making progress in the right direction, we 
believe that using educational data-mining techniques to 
build the cognitive model from existing CBTs can be less 
time consuming and will produce effective student models. 
                                                 
Copyright © 2007, Association for the Advancement of Artificial 
Intelligence (www.aaai.org). All rights reserved. 

 
The successful Cognitive Tutors created by Carnegie 
Learning use a cognitive model based on Adaptive 
Character of Thought (ACT-R) theory (Anderson 1995).  
Our system is modeled on ACT-R, using a cognitive 
architecture that uses production rules to model student 
problem solving processes. Two main processes are used 
to adapt ITS behavior to the student.  The first is called 
Model Tracing, which is used to provide feedback while 
the student is solving a particular problem.  The second is 
Knowledge Tracing, which is used to track a student’s 
overall learning and performance. 
 
Model Tracing tracks a student’s progress through a 
particular problem, matching their steps to production 
rules, and providing feedback if they proceed down an 
unsuccessful path.  Production rules can be “good” rules 
that are correctly applied, or “bad” rules, which are 
generally student misconceptions. We used data from an 
existing CBT to test the idea of using Markov Decision 
Processes to learn production rules for Model Tracing 
(Stamper 2006).  We compared the resulting production 
rule sets to those generated by experts. Our methods were 
able to extract all expert-predicted approaches, both correct 
and incorrect, while also revealing an extensive set of 
incorrect approaches that were not predicted by experts.  
 

Knowledge Tracing tracks a student’s overall learning of 
concepts within the system.  Typically, ITS designers 
create a skill matrix to relate problems to their respective 
knowledge components. Alternatively, these skill matrices 
can be learned using educational data-mining techniques 
such as the q-matrix method (Barnes 2006).  The q-matrix 
method is a data-mining algorithm that extracts a q-matrix 
from student assessment data, which will discover 
“concepts” that influence student behavior (Barnes 2006). 
This method has been successfully applied to learning the 
concepts underlying an online physics tutor, and these 
concepts compare well to the expert-derived Facets that 
were used to create the tutor (Barnes 2006).   We have also 
performed a 10-fold cross-validation on data from 284 
college students using a discrete math CBT across three 
semesters.  The resulting error rates between the training 
and the test sets were always at or below a 10% threshold, 
therefore the resulting q-matrix models are acceptable for 



predicting student concept states.  Based on this evidence, 
we believe that the q-matrix method can be used to 
automatically update the Knowledge Tracing model. 

System Design  

Our system will be comprised of a Knowledge Tracing 
Module (KTM) that will assess and direct student progress, 
and a Model Tracing Module (MTM) to provide problem-
specific feedback.   These modules will be added to an 
existing graphical CBT called Deep Thought (DT). This 
system allows students to work forward or backwards in 
solving propositional logic proofs. Over 200 students use 
this program each semester as part of a philosophy course. 

 

The KTM, as described above, will make decisions based 
on a student state relative to the overall skill matrix for the 
problems being solved.  The skill matrix will be initially 
derived from historical DT data, and will be continually 
updated as new students use the system.  The MTM will 
match student performance to a production rule system, 
initially derived using the MDP methods from our previous 
work, and will also be continually updated to include new 
rules to describe student behavior.   

 

The probabilities associated with a particular path through 
the production rule system are updated by every step that a 
student makes.  The system then predicts a student’s next 
action based on both the current rules associated with the 
problem being worked on and the student’s current 
classification, which is derived from the KTM.  When 
probabilities are reliable for a student solution path, 
feedback will be given whenever the student appears to be 
heading off of a successful path while attempting to solve a 
problem.  If the student starts down a path that has not 
been seen before, there may be no rules associated with the 
path.  In that case, the student will be allowed to traverse 
that path and new rules will be generated. 

 

Student knowledge is tracked via the probability that a 
particular student understands a particular group of 
concepts. Generating conceptual information is 
accomplished through the q-matrix educational data-
mining algorithm applied to the student data already 
accumulated. The KTM continually updates the q-matrix in 
the background as more student data is gathered.  This 
conceptual information is used to classify students into 
knowledge states, which will be used in turn by the MTM.  
Based on the student’s success or failure on each action, 
the student’s knowledge state is updated to reflect the 
probability that he/she understands each concept. 

Conclusions and Future Work 

We have demonstrated that we can automatically generate 
the individual parts of our model, and have designed the 

combined model for integration into a specific CBT 
system.  We can derive production rules for logic proofs 
using MDPs, and believe we will be able to generate 
appropriate feedback based on these rules.  We can derive 
a concept model using the q-matrix method, and use this 
model to assess and predict student knowledge.  These 
basic components provide the foundations for building 
Knowledge and Model Tracing into a CBT and may 
provide the full adaptive capability of a traditional ITS. 
 
Initially, our system will focus on building a stable set of 
rules and concepts.  We plan to validate the predictions the 
system generates about student progress.  We will also 
create a feedback generation system and an interface to 
allow educators to edit this feedback.  Later, we will 
compare performance using our new system to that using 
DT alone to determine if improvements are made. 
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