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Abstract 

We present a pioneering comparison between an expert-
driven clustering technique called Facet Theory with the 
data-driven q-matrix technique for educational data mining.  
Both facets and q-matrices were created in order to assist 
instructors with diagnosing and correcting student errors, 
and each have been used to augment computer-assisted 
instructional systems with diagnostic information.  
However, facets are very specific aspects of knowledge, and 
the decomposition of a topic into facets can be 
overwhelming to teachers who need this diagnostic help.  
We present a set of four experiments, demonstrating that the 
q-matrix educational data mining technique reflects expert-
identified conceptual ideas, but does so at a higher level 
than facets, indicating that a combination of expert-derived 
and data-derived conceptualizations of student knowledge 
may be most beneficial. 

1. Introduction 
Modern educational practice urges teachers to find out 
what their students think about a topic, prior to instruction. 
The teacher can then tailor the instruction to the initial 
conceptions. These techniques are especially recommended 
for the teaching of science, and for the delivery of 
computer-aided instruction. The assumption behind this 
approach is that students think consistently, albeit perhaps 
erroneously. If this assumption is correct it should be 
possible to identify objectively defined, consistent patterns 
in student assessment data. However there are few 
quantitative methods for mining educational data to 
identify concepts and the similarities between them.  
 Intelligent tutoring systems such as those in (Conati, et 
al., 2002; Heffernan & Koedinger, 2002; Van Lehn & 
Martin 1998) strive to identify student conceptions, but the 
majority of these systems require the construction of 
complex models that are applicable only to a specific 
tutorial in a specific field, requiring the time of experts to 
create and then test these models on students.  In fact, these 
are only a few of the tradeoffs ITS system developers face 
(Murray 1999).  One system, REDEEM, was built to 
ameliorate the time needed to create an ITS, and allow 
teachers to apply their own teaching strategies in an 

existing computer-based training (CBT) system, and has 
been shown to be more effective than a non-expert human 
tutor in improving student test scores (Ainsworth, et al., 
2003).  Another system, ASSERT, was built to replace the 
need for expert model design, using theory refinement to 
learn student models from behavior, and generate feedback 
for remediation (Baffes & Mooney, 1996).  Similarly, the 
q-matrix method, as described in (Barnes, 2005) employs 
knowledge discovery and data mining techniques to 
automatically assess student knowledge and direct 
knowledge remediation. 
 Assessments that reveal student conceptions are often 
called “diagnostic” assessments to distinguish them from 
assessments that are designed to identify only a student’s 
level of mastery of a subject. Typically authors of 
diagnostic assessments have relied upon experts to identify 
important instructional concepts and to design questions 
that can identify the common patterns of student thought. 
One such approach is called “facet theory” (Hunt and 
Minstrell, 1992). This approach, based on research on 
student misconceptions, catalogues common observable 
student ideas within a topic and uses them to create 
diagnostic questions. Thus, a pattern of student responses 
to a set of questions should describe to a teacher what 
conceptions would need to be addressed. 
 The process of identifying facets from qualitative 
research is laborious and error prone. The models of 
student knowledge used to create the lists of 
misconceptions and knowledge states that students possess 
are created by experts. The basic idea behind diagnostic 
instruction is that someone knows the patterns of errors 
that students have, and their frequency. In almost all fields 
experts are notoriously inaccurate at estimating the 
frequency of an event. Unless special precautions are taken 
unusual or striking ideas stand out, and the commonplace 
(base rate) is underrated (Fischoff, Licthenstein et al. 1981; 
Gigerenzer 2000). This may lead to over-diagnosis that 
will in turn overwhelm a teacher.  
 For diagnostic assessment to be truly useful, it must be 
able to scale. Automated techniques for identifying 
concepts from student data can help identify important 
ideas that instruction should address. In this paper, we 
compare the concepts identified automatically from 
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diagnostic question sets using the q-matrix method to the 
facets they elicit. We find that the q-matrix is able to pull 
out several important instructional concepts that span many 
facets, simplifying diagnosis. The mapping from q-matrix 
concepts to facets is clearest when the question set 
reliability is high and when students are of higher ability.  
 The remainder of this paper is organized as follows. 
Section 1.1 overviews related work. We describe the q-
matrix method in depth in Section 2, and facet theory in 
Section 3. We relate the two methods on the basis of their 
underlying student models in Section 4. In Section 5, we 
describe our methodology. Section 6 describes our 
experimental results. We conclude with final remarks in 
Section 7.  

1.1 Related Work 
The q-matrix was devised by Tatsuoka to develop a 
framework of knowledge structures and states  
(Birenbaum, et al. 1993; Tatsuoka, 1983), and similar 
matrices, called skill matrices, have been recently used in 
intelligent tutoring systems to represent the knowledge 
components in problems (Koedinger, et al. 2004). In skill 
or q-matrices, rows are attributes (e.g. tasks, concepts, 
skills) and columns are items or questions. Each entry in 
the matrix (1 or 0) indicates whether the attribute is 
involved in the solution of the item.  
 Given such a matrix, we can automate identification of a 
student’s knowledge state. However, determination of the 
attributes contributing to each question requires expert 
knowledge. In addition, and more importantly, it has been 
shown that q-matrices constructed by experts do not 
always accurately reflect patterns of student thought 
(Hubal, 1992).  In other words, we have no evidence that 
these states and relationships correspond to student 
understanding.  
 The q-matrix method is a data-mining algorithm that 
extracts a q-matrix from student assessment data, to 
discover “concepts” that influence student behavior, as 
described in (Barnes, 2005). This is an iterative algorithm 
that refines and adds concepts by adjusting randomly 
assigned matrix entries until the total error associated with 
clustering students by concept states is minimized.  
 Facet theory, developed by Minstrell (Minstrell 2001) 
grows out of research on student conceptions. A facet is a 
small observable piece of knowledge or a strategy that a 
student uses to make sense of a problem. A tool called 
DIAGNOSER (Hunt and Minstrell, 1996) is used to 
diagnose facets that appear in a class of students. Questions 
may be multiple choice, numerical response, or open-
ended. Multiple choice and numerical response ranges are 
coded to facets automatically. 

2. Q-matrix Method 
The original inspiration for the q-matrix method came from 
Tatsuoka et al., who explored student misconceptions in 
basic math concepts, such as adding fractions (Birenbaum, 

et al. 1993; Tatsuoka, 1983).  The main goal of this 
research was diagnosis of students’ misconceptions, which 
could be used to guide remediation, assess group 
performance as a measure of teaching effectiveness, and 
discover difficult topics (Birenbaum, et al. 1993). Tatsuoka 
developed a rule space, based on a relatively small set of 
rules and ideas, in which hypothesized expert rules and 
actual student errors in fraction addition could be mapped 
and compared. For example, for -1 + -7, one “rule” is that 
the student might add the two absolute values.  This 
answer, 8, would them be compared with student answers.  
This space allowed instructors to map student errors 
without having to catalog every possible mistake. The 
expert point in rule space closest to the student response 
corresponds to the rule the student is assumed to be using. 
This method improves on other procedural models, by 
creating a space where all student responses can be 
compared to expert predictions. 
 This idea of determining a student’s knowledge state 
from her test question responses inspired the creation of a 
q-matrix, a binary matrix showing the relationship between 
test items and latent or underlying attributes, or concepts 
(Birenbaum, et al., 1993). Students were assigned 
knowledge states based on their test answers and the 
constructed q-matrix.  An example of a binary q-matrix is 
given in Table 1.  A q-matrix, or “attribute-by item 
incidence matrix”, contains a one if a question is related to 
the concept, and a zero if not. For example, in this q-
matrix, questions q1 and q6 are both related by concept 
con1, while q1 is also related to q2 and q4 by concept 
con2.  Brewer extended these to values ranging from zero 
to one, representing a probability that a student will answer 
a question incorrectly if he does not understand the concept 
(1996). 

Table 1: Example q-matrix 

 Questions 
 q1 q2 q3 q4 q5 q6 
con1 1 0 0 0 0 1 
con2 1 1 0 1 0 0 
con3 1 1 1 0 0 0 
con4 1 0 1 0 0 0 

 
Tatsuoka’s rule space research showed that it is possible to 
automate the diagnosis of student knowledge states, based 
solely on student item-response patterns and the 
relationship between questions and their concepts.  Though 
promising, the rule space method is very time consuming 
and topic-specific, and requires expert analysis of 
questions. The rule space method provides no way to 
measure or validate that the relationships derived by 
experts are in fact those used by students, or that different 
experts will create the same rules.    
 In 1992, Hubal studied the correspondence between 
expert-derived q-matrices and student data, and found that 
these two did not necessarily coincide.  In 1996, Brewer 
created a method to extract a q-matrix from student data, 
and found that the method could be used to recover 



knowledge states of simulated students. In (Barnes & 
Bitzer, 2002), we applied the method to large groups of 
students, and in (Barnes, 2005; Barnes, Bitzer, & Vouk, 
2005) found the method comparable to standard 
knowledge discovery techniques for grouping student data.  
In particular, the method outperformed factor analysis in 
modeling student data and resulted in much more 
understandable q-matrices, but had higher error than k-
means cluster analysis on the data.  However, the q-matrix 
method is preferable to cluster analysis for automated 
direction of student learning, because human intervention 
would usually be required to create behaviors to associate 
with each cluster. 

2.1 Q-matrix Algorithm 
The q-matrix algorithm, as devised by Brewer in 1996, is a 
simple hill-climbing algorithm that creates a matrix 
representing relationships between concepts and questions 
directly from student response data.  The algorithm varies 
c, the number of concepts, and the values in the q-matrix, 
minimizing the total error for all students for a given set of 
n questions.  To avoid of local minima, each hill-climbing 
search is seeded with different random q-matrices and the 
best of these is kept. 
 First, c, the number of concepts, is set to one, and a 
random q-matrix of concepts versus questions is generated 
with values ranging from zero to one.  We then cluster 
student response data according to “concept states”, and 
compute the total error associated with assigning students 
to concept states, over all students.   
 After the error has been computed for a q-matrix each 
value in the q-matrix is changed by a small amount, and if 
the overall q-matrix error is improved, the change is saved. 
This process is repeated for all the values in the q-matrix 
several times, until the error in the q-matrix is not changing 
significantly. 
 After a q-matrix is computed in this fashion, the 
algorithm is run again with a new random starting point 
several times, and the q-matrix with minimum error is 
saved, to avoid falling into a local minimum.  It is not 
guaranteed to be the absolute minimum, but provides and 
acceptable q-matrix for a given number of concepts. 
 To determine the best number of concepts to use in the 
q-matrix, this algorithm is repeated for increasing values of 
c. The final q-matrix is selected when adding an additional 
concept does not decrease the overall q-matrix error 
significantly, and the number of concepts is significantly 
smaller than the number of questions.  This is comparable 
to the “elbow” criterion in choosing the number of factors 
for a factor analysis.  For this study, q-matrices with an 
error rate of less than 1 per student were selected.  Other 
built-in criteria could also be used to protect from over-
fitting the data. 

2.2 Q-matrix Evaluation 
In the q-matrix method, student responses are grouped into 
clusters by concept states.  Each cluster in the q-matrix 

method is represented by its concept state, a vector of bits 
where the ith bit is 0 if the students do not understand 
concept i, and a 1 if they do.  Each concept state also has 
associated with it an ideal response vector (IDR).  We use 
the concept state with the q-matrix to determine the IDR.  
For each question q in the q-matrix we examine the 
concepts needed to answer that question. If the concept 
state contains all those needed for q, we set bit q in the IDR 
to 1, and otherwise to 0.  When the q-matrix contains only 
binary values (not probabilities between 0 and 1), this can 
be calculated for a concept state c and the q-matrix Q by 
the following procedure, composing ¬c with Q: 

IDR =  ¬ ((¬c) Q) 
 
For example, given concept state c = 0110 and the q-matrix 
Q given in Table 1, ¬c = 1001, (¬c)Q = 101001. Therefore, 
IDR = ¬((¬c)Q) = 010110.  This can be explained by 
viewing (¬c)Q as all the questions that require knowledge 
in the concepts that are unknown for a student in concept 
state c.  Thus, the IDR for c is exactly the remaining 
questions, since none of these require concepts that are 
unknown for a student in concept state c. 
 When the q-matrix consists of continuous probabilities, 
we compute the IDR as explained above, but the negation 
symbol is interpreted as the probability of the opposite 
outcome, so in each case where a not appears, we 
interchange any following values x with 1-x.  

A q-matrix is evaluated on its fit to a set of student 
responses, and is measured as error per student.  We now 
describe the error computation method.    First, we create 
an array whose indices are answer vectors, from 0 up to 

2
q

-1, where q is the number of questions in the tutorial.  
We then tally the number of student responses with each 
answer vector.  Then, for each response with at least one 
student, we compare the response with all IDRs and choose 
the one closest in Hamming distance.  This distance is 
called the “error” for the student response.  We sum all 
errors over all students to determine the overall error for 
the q-matrix. 

3. Facet Theory 
Facet theory, like the q-matrix, was designed to explain 
student knowledge (Hunt and Minstrell, 1996; Minstrell 
2001).  A facet is a small observable piece of knowledge or 
a strategy that a student uses to make sense of a problem. 
Often students develop intuitive conceptions about a 
subject, or misconceptions, that interfere with learning.  
However, many prior conceptions are not technically 
incorrect, but may be classified as productive or not for 
learning.  Both productive and unproductive ideas are 
catalogued in “facet clusters”, or lists of related facets.   
 Facets are normally identified and validated through an 
iterative process. First, content experts survey research on 
related student misconceptions in the domain of interest at 
the appropriate age range and develop a set of open-ended 
questions that will elicit these ideas.  Second, student 



responses to these questions are coded and counted to 
determine the common (> 10%) facets of response. Third, 
these responses are loosely organized, using a numbering 
system, by “how problematic” they are, or how bad it 
would be to have a student leave the classroom holding 
those ideas. This is in contrast to the typical classification 
of student knowledge as correct conceptions versus 
misconceptions.   

A facet beginning with 0 is correct (a “goal facet”), 
facets in the 40s or 50s usually reflect an incorrect 
synthesis of some classroom instruction with previous 
misconceptions, and facets in the 80s and 90s represent 
very low-level ideas (e.g., an upward slope on a graph 
means there is a hill).  
 Hunt and Minstrell developed a WWW tool called 
DIAGNOSER (Hunt and Minstrell, 1996) to diagnose 
facets that appear in a class of students. DIAGNOSER 
question sets contain approximately 7-10 conceptual 
questions. Most questions are multiple-choice or numerical 
response questions where choices and numerical response 
ranges are coded to facets. When a response does not 
correspond to a facet, either because the multiple-choice 
distractor was designed that way or because a student 
enters a numerical value that cannot be matched to some 
reasoning strategy, the student is asked to repeat the 
question. Some branching is designed to pinpoint problems 
when a student exhibits a problematic facet. 
 The pattern of facets diagnosed for each individual 
student may be unreliable; typically students alternate 
between some set of related facets depending on their 
proficiency in the subject area. Nevertheless, consistency 
of student reasoning is usually tested at least once by 
asking the student to select, in a subsequent question, the 
statement that best corresponds to their reasoning.  
 DIAGNOSER is designed to assist teachers in the 
difficult task of diagnosing and correcting student 
misconceptions.    Teachers often have trouble recognizing 
the particular misconceptions students might have, and 
then do not know how to correct them beyond indicating 
wrong answers. This approach does not usually effect deep 
conceptual change. On the other hand, teachers can use 
DIAGNOSER to discover misconceptions and challenge 
students to explore alternate ideas.  Ideally, the teacher will 
use DIAGNOSER to elicit students’ facets of thinking. 
Then, students will be given a chance to test their ideas 
with a series of experiments or prescriptive activities. 
These explorations are designed to challenge students and 
help them to move towards the target level of 
understanding. The full suite of DIAGNOSER questions 
and materials is available at www.diagnoser.com.  
 Figure 1 shows question Q3 from one of the sets (DS1) 
that we analyze in Section 6.1. This question is a numerical 
response question, where possible input values are coded 
to facets as shown in Table 2. Because it is a position vs. 
time graph and the object moves 6m in 2 seconds, the 
correct response is 3.0 m/s. The question is constructed so 
that students with common misconceptions will give other 
answers. It is possible that the student can provide an 

answer that is not coded to a specific facet. Such a facet is  
“unknown”.   

 
Question Q3.  
Below is a position versus time graph of the motion of a 
toy car. What is the speed of the car at t = 2 seconds? 
 
Type your answer in the box below. Your answer must 
be a number. 
 
_______   meters/second 
 

 
Answer range classification by Facet: 

a. Other    [Unknown] 
b. 3.0-3.0 [02] 
c. 4.0-4.0 [71] 
d. 0.0-0.0 [76] 
e. 2.0-2.0 [Unknown] 
f. 6.0-6.0 [71] 

 

Figure 1. Question Q3 from Determining Speed Set 1 

Table 2. Sample "Determining Speed" facets 

Facet ID Description 
02 Given position vs. time data, student 

correctly describes and determines the 
speed of an object moving uniformly.   

71 
When asked for the speed at one instant, the 
student incorrectly reports another quantity 
or rate.  Student reports the position, change 
in position or distance traveled 

76 
When asked for the speed at one instant, the 
student incorrectly reports another quantity 
or rate.   Student reports zero, the object 
cannot be moving at an instant in time.  

4. Comparison of Underlying Student Models 
The facet approach is conceptually rather different from 
the q-matrix approach in its underlying student model. For 
each question in the DIAGNOSER question set, a facet 



diagnosis is made. Certain questions are intended to elicit 
specific facets. Each answer a student may select relates to 
only one facet.  In the q-matrix approach, each question is 
related to a set of concepts.  However, in the q-matrix 
approach the answer is rated only as right or wrong, and is 
seen to have resulted from a combination of knowledge of 
each concept related to that question.  A q-matrix 
characterization of student knowledge comes from a 
profile of all concepts across all the questions, while facets 
are determined for each individual answer.  The 
relationship of these two approaches relies upon how 
consistently students respond. 

If students reason coherently across different questions 
(e.g., if they read every graph as a map of motion) the q-
matrix method would reflect these consistent thought 
patterns, and we hypothesize that the resultant concepts 
would be comparable to facets. However, if students do not 
reason coherently, or if they respond according to patterns 
that the questions are not designed to measure (e.g., 
suppose a student considers axes labels only half the time, 
or answers every question with “c”), q-matrix error would 
increase, and the extracted concepts would be less clearly 
identifiable as meaningful knowledge patterns or facets. 
 According to the facet approach, students exhibit one of 
a small subset of related facets at any given time, and will 
move between them on similar questions. However, 
evidence suggests that students of higher math ability 
reason more coherently across questions, even when their 
responses are incorrect (Madhyastha et al, 2006).  This 
suggests that the q-matrix method would work best, in the 
sense of mining pedagogically useful concepts, for 
question sets taken by students of higher ability. 
  

5. Procedure 
We apply the q-matrix method and facet theory analysis to 
data collected from three physics question sets from the 
DIAGNOSER system from January 2004-May 2005. 
These sets were taken by students and some adults in all 
grade levels. Our hypotheses are: 1) the extracted q-
matrices and facet theory analysis will show overlap in the 
concepts derived, and 2) the concepts derived from the q-
matrix method will be clearer as question sets become 
more reliable and as students respond more coherently. 
 The question sets we used are: Determining Speed Set 1 
(DS1), Determining Speed Set 2 (DS2), and an extended 
set called New Determining Speed Set 1 (NDS). All of 
these sets are designed for diagnosing student ideas 
surrounding speed for grades 6-12, and are aligned with 
national standards for physics. Target concepts include 
being able to describe and calculate the speed of an object 
from: position vs. time graphs, speed vs. time graphs, data 
tables, and from dots drawn by a moving car at uniform 
intervals on a strip of paper (a “dot car” representation).  
 Determining Speed Set 1 (DS1) has 9 questions and 
Determining Speed Set 2 (DS2) has 10 questions. This 
length is typical of DIAGNOSER question sets. However, 

because these sets are designed so that students who have 
mastered the concepts obtain near perfect scores, they 
provide little reliable information about high achieving 
students. For this reason, the New Determining Speed Set 
1 was developed as an experimental set for use with other 
psychometric models. This set has 9 question “bundles”, 
most of which consist of a base question from Determining 
Speed Set 1, a follow-up challenge question for students 
who answer the base question correctly, and a follow-up 
repeat question, extremely similar to the original, for 
students who answer the base question with an unknown 
facet.  This set is designed to be more reliable than the 
others. This new set and Determining Speed Set 2 may be 
viewed at www.diagnoser.com. 
 We compare facets with extracted q-matrices for 5 
datasets: DS1, DS2, NDS, and DS1 separated into grade 
levels 7-8 and 11-12.  In all data sets, conditional questions 
with few responses were eliminated from the data set.  The 
only conditional question in DS1 is question 5, and this 
question was eliminated from DS1 for all experiments.  
NDS contains several conditional questions, and questions 
are numbered as 1, 1r, and 1c, for example, to indicate that 
1r and 1c are repeat and challenge questions for question 1.  
Missing values in these bundles were determined by 
applying the following assumptions: 1) if question 1 is 
correct, the next question given is 1c, and 1r, although not 
administered, is assumed to be correct, and 2) if question 1 
is incorrect, the next question given is 1r, and 1c is 
assumed to be incorrect.   

There were no missing values for questions administered 
to all students in a set, since students are not allowed to 
advance to the next question without answering the current 
one.  Data for each set consists of a list of student 
responses already coded into facets.  We converted these 
facets into bits representing whether the student answer 
was correct or incorrect. For goal facets numbered 01-03, 
these answers were correct, and coded as ones, while all 
other problematic facets were converted to incorrect 
answers, or zeroes. Only the first question attempt for each 
student (in the case of repeated identical questions, which 
occur only in DS1 and DS2) was considered. 

6. Results and Discussion 
We present the results of extracting q-matrices for students 
studying Determining Speed Sets 1 & 2 (DS1 & DS2) from 
January 2004-May 2005, and New Determining Speed Set 
1 (NDS) from November 2005-March 2006.  We also 
created q-matrices for students at two grade levels (7-8 and 
11-12) taking the DS1 set between January 2004-January 
2006.  In each section below, we compare the extracted q-
matrices with the diagnosed facets. 

6.1. Determining Speed Set 1 (DS1) 
We applied the q-matrix method to DS1, including 
responses from 1502 students.  Question Q5 was 
conditional, and few students took it, so it was dropped 



from the analysis. For the remaining 8 questions, a five 
concept solution resulted in the lowest error, about 1 per 
student. Table 3 shows the resulting q-matrix with concepts 
labeled A-E.  Table 4 shows the intended facets covered by 
each question of the set.  The facet labeled -1 is unknown, 
meaning that the cluster of students this facet describes is 
using a strategy that experts could not identify. 

Table 3. DS1 Q-matrix, 1502 students, error 1/student 
 Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 

A 0 0 1 0 0 0 1 1 
B 1 1 1 0 1 0 0 0 

C 0 0 1 0 1 1 0 0 

D 0 0 1 1 0 0 0 0 
E 0 1 0 0 1 0 0 1 

Table 4. Facet map for Determining Speed Set 1 

Facet Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 
-1 1 1 1    1   
01        1 1 
02  1 1       
03 1   1 1 1 1   
41       1   
42    1      
50       1   
51    1      
52      1    
70      1    
71   1       
72        1 1 
73        1 1 
74        1 1 
75        1 1 
76   1       
81  1        
82 1         
83     1     
84 1   1      
90  1  1      

 
The first thing to note is that question Q3 appears in all but 
one of the identified concepts. Based on this q-matrix, we 
predicted that this question was the most difficult in the 
set.  Question Q3 is a numerical response question that 
asks students to calculate the speed of an object at an 
instant using a position vs. time graph. This is the most 
difficult question in terms of aggregate response: only 27% 
of students answered it correctly. As indicated by the fact 
that it relates to three concepts, question 4, which asks 
students to describe the trip of an object from a speed vs. 
time graph, is the second most difficult (53% of students 
answered it correctly). Between 60-77% of students 
answered each of the remaining questions (related to 1-2 
concepts) correctly. It may be that question 9 is essentially 
acting as a “consistency” filter, cutting off students who 
are really answering with piecemeal knowledge? In other 
research we find that students of higher ability answer 
more systematically.  

When comparing the concepts in Table 3 to the facets in 
Table 4, we must remember that the goal facets 01-03 are 

all correct and thus should not be reflected as q-matrix 
concepts.  There is no obvious correspondence from facets 
to the q-matrix except for concept A, which maps directly 
to the union of facets 71-76. In DS1, questions Q7 and Q8 
are paired, where question Q8 asks students for reasoning 
to explain their answer to Q7. Concept A corresponds to 
the ability to give the speed at an instant in time. 

Since the relationship between facets in concepts B-E is 
not as clear, we interpreted these concepts by examining 
the percentage of students with each problematic facet and 
noting the skills required by the students to answer the 
questions. Concept B is possessed by students who know 
how to interpret a position vs. time graph to describe speed 
for straight and sloped segments, can calculate the speed 
from a position vs. time graph, and can describe speed 
from a dot car representation of motion. The problematic 
facets that occur most frequently (70, 71, 81 and 82) are, in 
context, all related to confusion of position and speed 
graphs. This is a very common problem that students have 
when learning this material.  We believe that Concept B 
corresponds to not confusing position vs. time graphs and 
speed vs. time graphs or other representations.  

 Concept C is demonstrated by proficiency on questions 
Q3, Q6 and Q7. These ask students to describe the motion 
of a car with constantly spaced dots, look at a table of 
speed data and describe motion, and look at a position/time 
graph and describe the speed at an instant. The most 
frequently occurring problematic facets in these questions 
are 70 and 71. There is clearly overlap with concept B here 
– both include Q6 and Q3. Question Q7 is unique in that it 
asks about a data table. Concept C corresponds to the 
ability to interpret three types of speed/time information.  

Concept D includes questions Q3 and Q4. Question Q4 
asks if students can accurately describe motion over a 
whole trip. Combined with the most difficult question 
(Q3), concept D corresponds to being able to describe 
motion over a trip.  
 Finally, concept E is interesting in that it includes 
questions Q2, Q6 and Q9. Since these questions do not 
seem to relate to a common set of facets, we conclude that 
concept E seems to be the “good test-taking” concept.  In 
other words, mastery of concept E is shown by students 
who are good at test taking, while missing Q2, Q6, and Q9 
together might indicate students who are attaining answers 
by guessing.  We note that, in generating any types of 
clusters, there is often one cluster that groups some diverse 
elements that don’t quite fit with other clusters. This may 
also be a plausible explanation of concept E. 

6.2. Determining Speed Set 2 (DS2) 
We next applied the q-matrix method to DS2, including 
responses from 335 students, resulting in a q-matrix using 
4 concepts for the 10 questions and attaining an error rate 
of 1.28 per student. Table 5 shows the resulting q-matrix 
with concepts labeled A-D.  Table 6 shows the intended 
facets covered by each question of the set.  



Table 5. DS2 Q-matrix, 335 students, error: 1.28/student 

 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
A 0 0 0 0 1 0 1 1 1 0 
B 0 0 0 0 0 0 0 1 0 1 

C 1 1 0 0 0 0 1 1 1 0 

D 0 0 0 1 1 1 1 1 0 0 

Table 6. Facet map for Determining Speed Set 2 

Facet Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 
-1  1        1 
01 1 1         
02        1 1  
03   1 1 1 1 1   1 
41   1        
42   1     1   
51 1  1  1 1 1    
52   1        
70         1 1 
71        1   
72        1 1 1 
73 1 1         
74  1  1       
75 1 1         
76        1   
80 1 1      1   
81       1    
82         1  
83     1 1     
84    1       
90      1     
91     1  1    
92    1       

 
Question Q8 occurs in each concept. It is orthogonal to 
question Q3 in DS1, and asks students to calculate an 
instantaneous speed from a position vs. time graph. Only 
13.8% of students answer it correctly. Question 7, which 
asks students to describe the motion of a car during a 
portion of a position vs. time graph depicting its trip, is the 
second hardest (52.5% of students answer correctly), and 
this is reflected by its relation to three concepts in the q-
matrix. The most frequent error is to say that the car is 
speeding up. As with DS1, this is a frequent problem.  
 Concept A covers all the questions that have to do with 
reading the speed off of a position vs. time graph, except 
for Question 5.  Its grouping with concept A may be 
simply due to its difficulty level – all the questions in this 
concept involve two or more concepts, meaning that they 
are the most difficult in this set. The meaning concept A in 
DS2 is similar to that of  concept A identified in DS1. 
Concept B is extremely interesting in that although it does 
not map cleanly on to the facets, it includes the most 
difficult question (Q8) in addition to the only question that 
asks about the dot car representation (Q10). Although the 
facets “covered” by the dot-car question overlap with 
others, this indicates that this may be a different concept. 
Students might not have been exposed to this 
representation in their studies. Concept C describes be 
students who do not confuse position and time graphs. 
Together, concepts B and C from DS2 map on to concept 

B derived from DS1.  Like concept D in DS1, Concept D 
in DS2 includes students who can describe motion from a 
speed vs. time graph, except for Question 8.  
 We find this correspondence between concepts extracted 
for DS1 and DS2 reassuring in assessing the performance 
of the q-matrix method, since both of these question sets 
are addressing similar pedagogical material. 

6.4. Determining Speed Set 1-Grades 7-8 & 11-12 
One assumption behind the q-matrix method is that 
students reason fairly consistently across questions, so that 
if they have the concepts necessary to answer a question, 
they are likely to do so correctly. However, this is one 
model of student reasoning that may not fit all students. In 
particular, there may be a relationship between ability and 
the probability of a student reasoning consistently. If this is 
true, we would expect the q-matrix method to derive 
concepts that are closer to the expert-defined facets when 
mining data from students of generally higher ability. In 
other words, the concepts mined by the q-matrix should 
correspond more closely to the intended facet diagnosis as 
students answer questions more consistently. We have 
found that consistency of student response increases with 
student ability (Madhyastha et al, 2006). To test this 
hypothesis, we examined subsets of students at the higher 
and lower end of the grade range for DS1. We considered 
separately students in grades 7-8 and grades 11-12.  Note 
that Table 4 lists the intended facets covered by each 
question of DS1, for both data sets. 
 The data for students in grades 7-8 includes responses 
from 468 students, resulting in a q-matrix using 4 concepts 
for the 8 questions and attaining an error rate of 0.9 per 
student. Table 7 shows the resulting q-matrix.  Labels A,B, 
and E in Table 7 correspond to those same concepts 
extracted for DS1, and concept C2D2 is so labeled since it 
combines concepts C2 and D2 found in the 5-concept q-
matrix for G11-12, as given in Table 9. 

Table 7. G7-8 Q-matrix, 4 concepts, error: 0.9/student 

 Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 
A1 0 0 1 0 0 0 1 1 
B 1 1 1 0 1 0 0 0 

C2D2 1 0 1 0 1 1 0 0 
E 0 0 1 1 0 0 0 0 

 
We also extracted q-matrices for DS1 for 1035 students in 
grades 11-12.  Table 8 lists the 4-concept q-matrix for this 
set, which has an error rate of 1 per student. Table 9 shows 
the extracted q-matrix for 5 concepts, and a total error of 
0.9 per student.  Using the criteria of about 1 error per 
student, either of these q-matrices would be acceptable.  
We list both here to compare G7-8 with G11-12. 

Table 8. G11-12 Q-matrix, 4 concepts, error: 1/student 

 Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 
A1 0 0 0 0 0 0 1 1 
B 1 1 1 0 1 0 0 0 
C1 0 0 1 1 1 0 0 0 
E 0 1 1 0 0 1 0 0 



 
Table 9. G11-12 Q-matrix, 5 concepts, error: 0.9/student 

 Q1 Q2 Q3 Q4 Q6 Q7 Q8 Q9 
A1 0 0 0 0 0 0 1 1 
B2 1 1 1 0 0 0 0 0 
C2 0 0 1 0 1 0 0 0 
D2 1 0 1 0 0 1 0 0 
E2 0 0 1 1 0 0 0 0 

 
In all three q-matrices, labels B, and E correspond to 
concepts B, and E for DS1, while concepts A1, C1, and 
B2-E2 are close to those with the same letters in DS1.  
Although the concepts derived are similar for both groups 
G7-8 and G11-12, they are far more refined in the upper 
level grades. Note that, for grades 7-8, question Q3 is still 
stumping most students (as evidenced by its relation to all 
4 extracted concepts), while for grades 11-12, concept A1 
is not related to question Q3, as concept A is for G7-8 and 
DS1.  This indicates more sophistication for higher-level 
students, and the resulting concept A1 is a purer 
representation of knowledge, corresponding to Facets 01, 
and 72-75, which are goal and problematic facets for  
determining the speed at a particular instant.  The 
difference between concepts A and A1 is that students with 
concept A1 no longer confuse position and speed, or these 
students are more purely described using concept B2. 

Concept B (the ability to distinguish between position 
and speed) is a very important one. The 5-concept q-matrix 
for the upper grades separates B out from interpreting the 
dot car representation (concept C2) from position and 
speed, resulting in concept B2. In the lower grades, the 
best fit includes fewer concepts, and many are 
commingled. Concept D2 combines describing motion 
from a position and speed graph and from a speed/time 
table with the most difficult question, Q3.   

Although the more concepts used to describe students, 
the more refined these concepts will be, we find it 
significant that the refined (5 concept) q-matrix for G11-12 
is separating the dot-car representation from position 
versus speed, and both the 4- and 5- concept q-matrices for 
upper level students separate speed determination from 
confusing position and speed (concept A1).  This supports 
our hypothesis that q-matrices derived from more 
consistent student responses more clearly delineate facets. 

6.3. New Determining Speed Set 1 (NDS) 
We next applied the q-matrix method to NDS questions 1-
8p, including responses from 830 students, resulting in a q-
matrix using 4 concepts for the 16 questions and attaining 
an error rate of 2.4 per student (but still around 15%), 
given in Table 10.  This is not the optimal q-matrix but we 
found that q-matrices with more concepts were tending to 
overfit the data, due to the difficulty of questions 2c, 3, 3r, 
and 5c, which were answered correctly by only 56 
students.  Refer to Table 4 for the facets for each question. 
 We summarize the goals of each bundle, which 
correspond to questions 1-8 in DS1 as follows: 

 
1. Describe the motion of an object from a position vs. 

time graph 
2. Describe the speed of an object from a portion of a 

position vs. time graph 
3. Identify speed from a position vs. time graph 
4. Describe motion from a speed vs. time graph 
5. Describe motion for part of the journey of an object on 

a speed vs. time graph 
6. Describe motion from a dot car trace (a car that leaves 

dots on a strip of paper at regular time intervals) 
7. Describe motion from a table 
8. Identify speed from a speed vs. time graph 

 
We note that in Table 7, each concept relates to questions 
and repeats the same way (e.g. 1 and 1r are both 0’s or 
both 1’s for all concepts).  We also note that, outside of 
questions 2c, 3, 3r, and 5c, which are the most difficult, 
most questions relate to only one concept, and three of 
these to B3, which highlights facets 01, and 72-76, and is a 
crucial concept dealing with relating   Exceptions to this 
are question 2, 2r, and 6, which all also relate to C3, which 
covers describing motion from graphs (bundles 4-6) and 
describing speed from a position versus time graph.  
Concept D3 involves describing motion over a whole trip, 
and also groups several of the most difficult questions 
together.  Concept A3, corresponds to concept DS1-A, the 
ability to determine speed at an instant in time. We note 
that question 7 relates to no extracted concepts, indicating 
that it was answered correctly by almost all students in the 
data set. 
   

Table 10. NDS Q-matrix, 4 concepts, error: 2.4/student 

 1 1r 1c 2 2r 2c 3 3r 4 4c 5 5c 6 7 8 8p 
A3 0 0 0 0 0 1 1 1 0 0 0 1 1 0 1 1 
B3 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0 
C3 0 0 0 1 1 1 1 1 1 1 0 1 1 0 0 0 
D3 0 0 0 0 0 1 1 1 1 1 1 1 0 0 0 0 

 
We verify that the q-matrix extracted for NDS does not 
differ greatly from that for DS1 in Table 11, where we have 
omitted question Q5 and all repeat and challenge questions 
from NDS.  Concept A3 differs in just one position (Q6) 
from DS1-A.  Concept B3, like concept B2 above, removes 
dot-car representations from DS1’s concept B.  C3 does 
not correspond well to DS1, which may indicate some 
fitting to the other questions.  Concept D3 is identical to 
concept DS1-D.   

Table 11. NDS Q-matrix omitting Q5, repeats & challenges 

 Q1 Q2 Q3 Q4 Q6 Q7 Q8 
A3 0 0 1 0 1 0 1 
B3 1 1 1 0 0 0 0 
C3 1 1 1 1 0 0 0 
D3 0 0 1 1 0 0 0 

 
The q-matrices resulting from the analysis of NDS were 
not as easy to interpret as we expected.  We hypothesized 



that this data set would be more reliable and reflect facets 
more clearly than DS1. Through this analysis, however, we 
have determined that students are not performing as well as 
we may have hoped on the challenge questions and this 
performance may be affecting their performance on other 
items.  NDS is a newer set of questions, and the interface 
for transferring between questions is not as smooth as that 
for DS1.  We also note that students may have gotten into a 
rhythm of problem-solving in DS1 that may have been 
disrupted by our conditional branching in NDS, and that 
this disruption, along with the interface differences, may 
have affected student performance. 

6.5 Q-matrix Method Results 
This study serves as evidence of the robustness of the q-
matrix method with respect to class size, student grade 
level, and topic. In our previous work (e.g. Barnes, 2005), 
we successfully applied the q-matrix method to data 
collected from 200 college-level discrete mathematics 
students, but hypothesized that the method could apply in a 
general topic setting and would scale to larger data sets.  
We have effectively applied the q-matrix method to 
question sets administered to groups of 300-1500+ physics 
students from 7th grade and up.   Although the running time 
of the method is approximately S*Q*C, where S=students, 
Q=questions, and C=concepts, even with low Q values (8-
16), running time becomes long with more than 8 concepts 
with our Java implementation on a standard modern PC.  
We plan to address this through improved initialization 
options, such as initializing the q-matrix with student data 
values, and through implementing the algorithm in C.    
 The DIAGNOSER question sets are designed with 9-10 
main questions and some repetitive and challenge items, 
while in previous work we have applied q-matrices to sets 
of 5-10 questions.  It is still an open question whether the 
q-matrix method will prove effective in analyzing data 
from much larger question sets.  We suspect that the 
improvements we plan for the method will be essential in 
ensuring the convergence of the method to acceptable 
solutions with large question sets. 

7. Final Remarks 
This study provides one of the first comparisons of an 
extensive expert decomposition of student knowledge with 
an automated extraction method.  Our results suggest that 
automated extraction can be interpreted by area experts and 
provide useful complementary information to an expert-
derived system.  

Barnes (2005) and Hubal (1992) found that the q-
matrices elicited from experts after question sets were 
created do not necessarily relate to student performance.  
However, with the data sets created for DIAGNOSER, we 
were able to find some correspondence between existing 
expert decompositions and extracted q-matrices.   

Q-matrices may even explain higher-level concepts than 
facets, and in each experiment, q-matrix concepts are 

reflecting the most important concepts in learning to 
determine speed from different representations. 

Facets are intentionally very low-level constructs. 
Nevertheless, the breadth of facet patterns diagnosed in the 
classroom must be simplified to be of use to a teacher. By 
identifying the relationships between diagnostic questions, 
q-matrices may explain higher-level concepts than facets. 
In each experiment, q-matrix concepts are reflecting the 
most important patterns of error that students typically 
bring with them to the classroom. We suggest that 
augmenting DIAGNOSER’s feedback with q-matrix 
concepts may add an important dimension to teacher 
feedback and may make understanding student behavior 
easier for classroom teachers. 

 One problem with using facets for diagnosis is that 
students may not reason consistently across questions, 
resulting in diagnoses that are fleeting. Q-matrix concepts 
help to isolate the patterns of response that occur more 
consistently. As we found by examining q-matrices 
resulting from mining students of higher and lower grade 
levels, the concepts identified from the higher grade level 
students are more distinct versions of the ones found from 
the group as a whole.  
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