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Abstract. We have developed a tool for generating hints within computer-aided 
instructional tools based on a corpus of student work. This tool allows us to select 
source problem solutions that match the current user solution and generate hints 
based on next problem steps that are most likely to lead to a successful solution. 
However, within such a tool it is possible to generate hints that did not turn out to 
be useful in the source problem solution. Therefore, we have proposed a metric to 
measure and integrate a "utility" function to choose source material for hint 
generation. In this paper we present our metric and an experiment to investigate its 
use on real data from a logic proof tutorial. 
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Introduction 

In our previous work, we have created an automated hint generator that uses past 
student data stored in a Markov Decision Process (MDP) to provide hints in a tutor to 
teach logic [2]. The most important feature of our MDP method is the ability to assign 
a value to the states, since this allows the tutor to identify the action that will lead to the 
next state with the highest value. The value of the state could also be called the 
expected utility of the state. Our current method of assigning utility is a straightforward 
implementation of value iteration on a MDP [4]. While this method has been successful 
in generating valid hints there have been instances where the hint was not directly 
helpful in solving the problem. In this current research we show our work towards a 
better utility metric that could improve or replace the MDP value. 

The utility metrics that we present here show capable methods for determining 
the “goodness” of a state by taking into account the features contained in a particular 
state. In our original MDP method, all paths which solved the problem were directed to 
a single goal state which was given a high reward value. The use of a single goal state 
works well in most cases, but we have found two issues where the method could be 
improved. Occasionally, a student will come up with a unique way to solve a problem, 
and do so with few errors. Using a straightforward value iteration scheme with high 
negative rewards (e.g penalties) assigned to errors, steps in these rare but completely 
correct solutions can have higher values than those that are much more typical or 
frequent. The reason this occurs is the occurrence of more errors along a more common 
solution path. In these cases, our automated hint generator will suggest hints derived 
from the rare but higher-valued solution, which might be harder for some students to 
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understand.  To address this we can place a higher weight on overall frequency relative 
to penalties for errors. The second issue is that our MDP method currently expects 
labels for correct problem solutions. Unlike our original method where the goal state 
was known, the utility metrics we propose here can be applied with our MDP method 
for hint generation in ill-defined domains where correctness may be difficult to assess.  

2. Frequency Weight Metric 

The frequency weight metric applies a weighted factor to the value of each state. This 
weight can be added during or after the value iteration processing of the MDP. The 
weight is based on the frequency of the individual features of each state. In order to 
determine the frequency weight we extract a term-document matrix to obtain the 
frequency of state features. A term-document matrix is used in Latent Semantic 
Indexing (LSI) research for search large amounts of text [3]. In our work in the domain 
of solving logic proofs, the term-document matrix is simply large grid containing all 
the statements (state features) in the proof on one axis and all of the student attempts on 
the other axis. We then mark which of the statements occur in each individual student 
attempt and then compute the frequency by summing the columns. The frequency can 
be used to identify which features are most frequent. For a given state “usefulness” was 
computed by combining the frequencies of each feature in the state. 

When this metric was used for initial state values we found it was too strong 
and caused the metric to reinforce itself during value iteration making it the sole factor 
in hints being the frequency and not nearness to the problem solution. To mitigate this 
issue we next applied the usefulness weights after value iteration. However, this new 
weight tended to reward high frequency errors. These issues led us to focus on just the 
potential goal states which became the basis of the terminal state utility metric.  

3. Terminal State Utility Metric 

For this metric we start with the state feature frequency determined using the term-
document matrix as described in the same way as the frequency weight metric. We then 
set a percentage frequency threshold such that all state features above the threshold had 
a good potential of being a part of the solution. Setting this threshold can be done 
automatically or with the help of a domain expert. In the problem we studied, a graph 
of the feature frequencies showed the possible threshold points and a domain expert 
picked the one that best represented the break between high and low value features. 
Once a list of frequent statements is determined, we calculate initial utility values for 
all terminal states (leaves) in the MDP. This replaces our original approach of creating 
a goal state with a single positive value. Valid terminal states are therefore candidate 
goal states. The utility value of a terminal state is the sum of the value for each step (or 
feature) in the student attempt. The value of each step is positive if it was frequent and 
negative otherwise. Error states receive a high negative start value, and all other states 
start at zero. After the initial values are set, value iteration is applied until the state 
values stabilize resulting in a value for every state. 

The most important use of the MDP method is to give students hints. Hints are 
given by providing the student details of the best state reachable from their current state 
[cite]. To compare the utility metric value to those generated by our original MDP we 



calculated both values on the same problem 1 dataset that was used in our previous 
validation study [1].  Both methods create the same 821 states, of which 384 were non-
error states. From the non-error states, 180 states had more than one action resulting in 
new state. These 180 states are the ones that we focused on since these are the only 
states that could potentially lead to different hints. Comparing the two methods, they 
agree on the next best state in 163 states out of 180 (90.56%). For the remaining 17 
states where the two methods disagreed, experts identified 4 states where the MDP 
method identified the better choice, 9 states where the utility method identified the 
better choice, and 4 states that were essentially equivalent.  

These results show that the utility method does at least as good a job as the 
traditional MDP method in determining state values even when it is not known if the 
student attempt was successful. In all cases, the hints that would be delivered with 
either method would be helpful and appropriate, although the fact that the utility 
method focuses more on the frequency may make this a stronger method since it more 
closely follows the majority of students. In the past we have suggested that a different 
value function that relies more on frequency could help students solve problems in 
ways they are more ready. 

4. Conclusion and Future Work 

Using MDP values generated from past student data to provide context specific hints to 
students is a useful way to add ITS capabilities automatically. There is however, a 
possibility of giving less than perfect hints with this method. In this work we are 
attempting to improve the hints by enhancing the state values using an additional 
metric. We have shown how metrics based on frequency could help improve our 
traditional MDP especially in instances where the completeness of the student attempts 
is not known. In our original work, we emphasized expert-like solutions. This work 
relies on the frequency of state features exclusively to determine the utility of terminal 
states. However, other strategies could be used to automatically assign values to states 
or steps in a problem, particularly general features that are known for solutions in the 
given domain, such as containment of particular words, phrases, or structures. Since 
our simulation showed that the utility metric would perform similarly to our original 
metric, we next plan to verify that the utility metric can deliver valuable hints in a real 
tutor environment.  
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