
Utility in hint generation: Selection of hints
from a corpus of student work

John Stamper1 and Tiffany Barnes
 Department of Computer Science, University of North Carolina at Charlotte

Abstract. We have developed a tool for generating hints within computer-aided
instructional tools based on a corpus of student work. This tool allows us to select
source problem solutions that match the current user solution and generate hints
based on next problem steps that are most likely to lead to a successful solution.
However, within such a tool it is possible to generate hints that did not turn out to
be useful in the source problem solution. Therefore, we have proposed a metric to
measure and integrate a "utility" function to choose source material for hint
generation. In this paper we present our metric and an experiment to investigate its
use on real data from a logic proof tutorial.

Keywords. data mining, machine learning, logic tutor

Introduction

In our previous work, we have created an automated hint generator that uses past
student data stored in a Markov Decision Process (MDP) to provide hints in a tutor to
teach logic [2]. The most important feature of our MDP method is the ability to assign
a value to the states, since this allows the tutor to identify the action that will lead to the
next state with the highest value. The value of the state could also be called the
expected utility of the state. Our current method of assigning utility is a straightforward
implementation of value iteration on a MDP [4]. While this method has been successful
in generating valid hints there have been instances where the hint was not directly
helpful in solving the problem. In this current research we show our work towards a
better utility metric that could improve or replace the MDP value.

The utility metrics that we present here show capable methods for determining
the “goodness” of a state by taking into account the features contained in a particular
state. In our original MDP method, all paths which solved the problem were directed to
a single goal state which was given a high reward value. The use of a single goal state
works well in most cases, but we have found two issues where the method could be
improved. Occasionally, a student will come up with a unique way to solve a problem,
and do so with few errors. Using a straightforward value iteration scheme with high
negative rewards (e.g penalties) assigned to errors, steps in these rare but completely
correct solutions can have higher values than those that are much more typical or
frequent. The reason this occurs is the occurrence of more errors along a more common
solution path. In these cases, our automated hint generator will suggest hints derived
from the rare but higher-valued solution, which might be harder for some students to

1 Corresponding Author.

understand. To address this we can place a higher weight on overall frequency relative
to penalties for errors. The second issue is that our MDP method currently expects
labels for correct problem solutions. Unlike our original method where the goal state
was known, the utility metrics we propose here can be applied with our MDP method
for hint generation in ill-defined domains where correctness may be difficult to assess.

2. Frequency Weight Metric

The frequency weight metric applies a weighted factor to the value of each state. This
weight can be added during or after the value iteration processing of the MDP. The
weight is based on the frequency of the individual features of each state. In order to
determine the frequency weight we extract a term-document matrix to obtain the
frequency of state features. A term-document matrix is used in Latent Semantic
Indexing (LSI) research for search large amounts of text [3]. In our work in the domain
of solving logic proofs, the term-document matrix is simply large grid containing all
the statements (state features) in the proof on one axis and all of the student attempts on
the other axis. We then mark which of the statements occur in each individual student
attempt and then compute the frequency by summing the columns. The frequency can
be used to identify which features are most frequent. For a given state “usefulness” was
computed by combining the frequencies of each feature in the state.

When this metric was used for initial state values we found it was too strong
and caused the metric to reinforce itself during value iteration making it the sole factor
in hints being the frequency and not nearness to the problem solution. To mitigate this
issue we next applied the usefulness weights after value iteration. However, this new
weight tended to reward high frequency errors. These issues led us to focus on just the
potential goal states which became the basis of the terminal state utility metric.

3. Terminal State Utility Metric

For this metric we start with the state feature frequency determined using the term-
document matrix as described in the same way as the frequency weight metric. We then
set a percentage frequency threshold such that all state features above the threshold had
a good potential of being a part of the solution. Setting this threshold can be done
automatically or with the help of a domain expert. In the problem we studied, a graph
of the feature frequencies showed the possible threshold points and a domain expert
picked the one that best represented the break between high and low value features.
Once a list of frequent statements is determined, we calculate initial utility values for
all terminal states (leaves) in the MDP. This replaces our original approach of creating
a goal state with a single positive value. Valid terminal states are therefore candidate
goal states. The utility value of a terminal state is the sum of the value for each step (or
feature) in the student attempt. The value of each step is positive if it was frequent and
negative otherwise. Error states receive a high negative start value, and all other states
start at zero. After the initial values are set, value iteration is applied until the state
values stabilize resulting in a value for every state.

The most important use of the MDP method is to give students hints. Hints are
given by providing the student details of the best state reachable from their current state
[cite]. To compare the utility metric value to those generated by our original MDP we

calculated both values on the same problem 1 dataset that was used in our previous
validation study [1]. Both methods create the same 821 states, of which 384 were non-
error states. From the non-error states, 180 states had more than one action resulting in
new state. These 180 states are the ones that we focused on since these are the only
states that could potentially lead to different hints. Comparing the two methods, they
agree on the next best state in 163 states out of 180 (90.56%). For the remaining 17
states where the two methods disagreed, experts identified 4 states where the MDP
method identified the better choice, 9 states where the utility method identified the
better choice, and 4 states that were essentially equivalent.

These results show that the utility method does at least as good a job as the
traditional MDP method in determining state values even when it is not known if the
student attempt was successful. In all cases, the hints that would be delivered with
either method would be helpful and appropriate, although the fact that the utility
method focuses more on the frequency may make this a stronger method since it more
closely follows the majority of students. In the past we have suggested that a different
value function that relies more on frequency could help students solve problems in
ways they are more ready.

4. Conclusion and Future Work

Using MDP values generated from past student data to provide context specific hints to
students is a useful way to add ITS capabilities automatically. There is however, a
possibility of giving less than perfect hints with this method. In this work we are
attempting to improve the hints by enhancing the state values using an additional
metric. We have shown how metrics based on frequency could help improve our
traditional MDP especially in instances where the completeness of the student attempts
is not known. In our original work, we emphasized expert-like solutions. This work
relies on the frequency of state features exclusively to determine the utility of terminal
states. However, other strategies could be used to automatically assign values to states
or steps in a problem, particularly general features that are known for solutions in the
given domain, such as containment of particular words, phrases, or structures. Since
our simulation showed that the utility metric would perform similarly to our original
metric, we next plan to verify that the utility metric can deliver valuable hints in a real
tutor environment.

References

[1] Barnes, T., Stamper, J. (2008). Toward Automatic Hint Generation for Logic Proof Tutoring Using
Historical Student Data. In E. Aimeur, & B. Woolf (Eds.) Intelligent Tutoring Systems (ITS 2008), pp.
373-382. Berlin, Germany: Springer Verlag.

[2] Barnes, T., Stamper, J., Croy, M., Lehman, L. (2008). A Pilot Study on Logic Proof Tutoring Using
Hints Generated from Historical Student Data. In R. Baker, T. Barnes, J. Beck (Eds.) Educational Data
Mining (EDM 2008), pp. 197-201. Montreal, Canada.

[3] Landauer, T. K., Foltz, P. W., and Laham, D. (1998). Introduction to Latent Semantic Analysis.
Discourse Processes, 25, 259-284.

[4] Sutton, R. & A. Barto. Reinforcement Learning: An Introduction, 1998, The MIT Press, Cambridge, MA.

