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Abstract. The proliferation of fake news has underscored the impor-
tance of critical thinking in the civic education curriculum. Despite this
recognized importance, systems designed to foster these kinds of critical
thinking skills are largely absent from the educational technology space.
In this work, we utilize an instructional factors analysis in conjunction
with an online tutoring system to determine if logical fallacies are best
learned through deduction, induction, or some combination of both. We
found that while participants were able to learn the informal fallacies us-
ing inductive practice alone, deductive explanations were more beneficial
for learning.

Keywords: Informal Logic, Instructional Factors, Analysis, Online Tu-
toring Systems, Argumentation, Ill-defined Domains

1 Introduction

In late November of 2016, Ipsos Public Affairs surveyed Americans about the
accuracy of various real and fake news headlines. They found that respondents
rated fake news headlines as ”somewhat” or ”very” accurate 75% of the time
[19]. Given the fact that most (62%) of adults get their news from social media
outlets where fake news is most rampant [9], the need for a citizenry capable of
evaluating evidence and arguments is more crucial than ever. We propose that
educational technology provides an opportunity for accessible, evidence-based
instruction on these essential critical thinking skills. To test this claim, we built
an online tutoring system designed to teach people how to identify informal
logical fallacies.

The recognized importance of critical thinking skills is not new. In 1972, a
study conducted by the American Council on Education found that 97% of the
40,000 faculty members interviewed considered fostering critical thinking skills
to be the most important goal of undergraduate education [16]. Over two decades
later, a similarly large study by Paul et al. [17] of 66 colleges and universities
found that 89% of faculty saw critical thinking as a primary objective of their in-
struction. Note that these faculty members are reflecting on a world where ”fake
news” was an article about lizard people in the National Enquirer. Citizens can
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no longer simply consume information, assuming that a wide distribution or high
production value implies a certain level of legitimacy. Being an informed citizen,
the foundation of civic engagement, requires evaluating sources of information
and recognizing poorly constructed arguments.

The ability to recognize when an argument is built upon a faulty premise
is a key facet of critical thinking. In the Common Core Standards for English
Language Arts & Literacy, the ability to identify fallacious reasoning or dis-
torted evidence is listed alongside basic communication skills like ”evaluating a
speaker’s point of view” and ”[their] use of evidence and rhetoric” as key mea-
sures of a student’s career or college readiness. The same standards suggest that
the cost of failing to adequately teach these kinds of reasoning skills is high. In
the introduction to the standards, the authors stress that the importance of these
skills extends well beyond the students’ academic lives, arguing that students
must ”reflexively demonstrate the cogent reasoning and use of evidence that is
essential to both private deliberation and responsible citizenship in a democratic
republic” [12].

There is, unfortunately, little evidence to suggest these aspirational goals
are met in practice. In the same study of 66 colleges and universities, Paul
et al. [17] found that only a small percentage of faculty members (9%) were
teaching for critical thinking on a daily basis. Even then, these generally under-
whelming efforts to teach critical thinking skills are only available to students
attending colleges and universities. Few opportunities for learning these skills ex-
ist for citizens not receiving a post-secondary education. Citizens lack accessible,
evidence-based ways to learn critical thinking skills. We propose that educational
technology (e.g., educational games, intelligent tutoring systems, etc.) may play
a role in filling that vacuum.

Unfortunately, most research and interventions that utilize intelligent tutor-
ing systems focus on well-defined domains such as math and science [7]. This
bias towards well-defined domains may be due to an increased cultural focus on
STEM education [10], or simply due to the fact that problems in well-defined
domains tend to have solutions that are (generally) clear-cut and therefore more
amenable to interpretation by a computer system. That said, there has been some
work demonstrating that intelligent tutoring systems can be effective learning
tools in ill-defined domains. For example, Ashley and Aleven [3], have demon-
strated that intelligent tutoring systems can be used to teach law students to
argue with cases. Similarly, Easterday et al. [8] has shown that educational games
can be used to teach skills such as policy argumentation. With respect to argu-
mentation specifically, research has shown the effectiveness of digital argument
diagramming tools on teaching argumentation [18], and fostering critical think-
ing skills [11].

That is not to say that building educational technology for ill-defined do-
mains does not present unique challenges. In their review of research on intel-
ligent tutoring systems for ill-defined domains, Lynch et al. [15] describe how
characteristics such as a lack of formal theories or the inability to verify ”cor-
rect” solutions make designing systems to teach these domains challenging. In
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our domain of informal logic, for instance, it would be problematic to simply ask
participants if an argument is fallacious because an infinite number of factors
could contribute to whether or not a participant considers an argument is valid.
Take the following argument for example:

I was just outside; it’s raining.

This incredibly innocuous statement would rarely elicit a critical thought
in normal conversation. However, in the context of a tutoring system designed
to test critical thought, even this mild statement might be met with critiques
like: How long have you been inside? Maybe it stopped raining. It may be raining
there, but it’s not raining everywhere. How do you define raining? Maybe it’s
just misting.

To overcome some of these challenges and make teaching informal logic more
tractable, we narrow our focus to the relatively more structured but under-
investigated area of informal logical fallacies. By focusing on fallacies, we can
avoid the problems associated with focusing on how valid an argument is, and
instead focus on teaching learners to identify specific patterns of faulty argumen-
tation. Instead of asking if an argument is fallacious, we can ask if the argument
contains a specific fallacy. This unfortunately does not solve the problem of
ambiguity completely. Even the presence or absence of a specific fallacy in an
argument can be debatable if the argument is sufficiently nuanced. We mitigate
this concern by making the arguments we present as unambiguous as possible,
albeit at the potential expense of authenticity (see [4]).

In addition to examining the feasibility of teaching informal logical fallacies
using an online tutoring system, we also demonstrate the utility of tutoring sys-
tems as a platform for researching how students learn to identify patterns of
faulty reasoning. Most textbooks teach informal fallacies with a combination of
general definitions and specific examples. However, the relative effectiveness of
these two different kinds of instruction is unclear. The inclusion of a definition for
the fallacy seems intuitive, but it may be the case that students can learn to iden-
tify fallacies simply by seeing many different examples (i.e., through induction
alone). Note that the Common Core Standards called for these reasoning skills to
be reflexive, suggesting an automaticity that corresponds to inductive skills. We
frame our investigation using the Knowledge-Learning-Instruction (KLI) frame-
work [13], which suggests that the best instruction for teaching a specific skill
depends on the type of process used to learn that skill. With respect to the cur-
rent study, we ask whether identifying informal fallacies is primarily an inductive
process or a deductive, sense-making process.

In this work we utilize the agile nature of online tutoring systems to explore
how people learn to identify logical fallacies. We tested five different instructional
designs. Each design shares some instructional features with one or more of the
others. Rather than compare these designs directly, we can leverage the degree to
which the different designs overlap by using an instructional factors analysis. The
instructional factors analysis determined the relative effectiveness of each of the
three main instructional components (inductive practice, expert-explanations,
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and self-explanations) present in different combinations across the five designs.
We found that:

1. We can successfully teach the Appeal to Ignorance fallacy using an online
tutor.

2. Participants could learn the fallacy through inductive practice alone.
3. However, deductive explanations (via Expert-Explanations) were more ef-

fective than inductive practice.

The main contribution of this work is the use of an instructional factors
analysis to determine the relative impact of two traditional types of instruction
on teaching logical fallacies. Our results will inform the design of future informal
fallacy tutoring systems, and demonstrate the usefulness of intelligent tutoring
systems for teaching and researching informal logical fallacies.

2 Methods

A total of 86 participants were recruited using Amazon Mechanical Turk [5].
Participants were required to be located in the United States and were compen-
sated at a rate of $10 USD/hour to participate in the experiment. Demographic
information was collected during a post-test questionnaire. Of all participants,
45% were female, 46% were college-educated, and the average age was 31 years
old. 77% of participants identified as Caucasian, 8% as Black or African Amer-
ican, 8% as Asian, 3% as Hispanic, and 2% did not identify with the listed
options or identified with more than one. None of these demographic factors
were significant predictors of performance.

2.1 Informal Logical Fallacies

Informal logical fallacies are patterns of bad argumentation, where the premises
fail to support the conclusion. Informal fallacies are distinct from formal fallacies,
which are errors in the form of an argument (e.g., If P then Q; Q; Therefore P).
In contrast, informal fallacies more often contain errors in the content of the ar-
gument (e.g., mischaracterizing an opponent’s argument). While there are many
types of informal fallacies, some are more common than others. Ad Hominem
(attacking the person rather than their argument), for example, has become
mainstream enough to be mentioned by name during U.S. Presidential Debates.
Because prior knowledge and conceptions of well-known fallacies might impact
our results, for this work we chose to focus on a lesser known informal fallacy:
Appeal to Ignorance.

The Appeal to Ignorance Fallacy Appeal to Ignorance is an informal logical
fallacy that involves using the absence of evidence as evidence itself. For example,
if I were to argue, ”Bigfoot exists because nobody has proven he doesn’t exist” I
would be employing the Appeal to Ignorance fallacy. While this simple example is
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illustrative, in reality use of the Appeal to Ignorance is often more subtle. During
one of his witch hunts in the 1950s, Joseph McCarthy produced a list of 81 names
of people he claimed to be Communists working inside the State Department.
When asked about one of the names on the list, McCarthy infamously said:

I do not have much information on this except the general statement
of the agency that there is nothing in the files to disprove his Communist
connections.

As with most informal logical fallacies, the boundary of what is and isn’t fal-
lacious is also often less clear in the real world. For example, the justice system
in the United States operates under the assumption of innocence until proven
guilty. While this assumption appears to be directly at odds with evidence-based
logic, the distinguishing feature here is the thorough, methodical investigation
that (at least theoretically) is present in every case. Tindale [20] suggests that we
can distinguish an Appeal to Ignorance by asking if there has ”been a reasonable
effort to search for evidence, or is the absence of evidence for or against some-
thing really negative evidence arising from the attempts to show otherwise?”
As mentioned previously, we deliberately avoided these kinds of subtleties when
designing the problems used in the tutoring system to make the correct an-
swer as clear and unambiguous as possible. Examples of the kinds of arguments
implemented in the tutoring systems can be seen in Figures 1, 2, and 3.

2.2 The Fallacy Tutor

In order to test the relative effect of different kinds of instruction on teaching
logical fallacies, we built a simple online tutoring system for teaching one kind
of fallacy (Appeal to Ignorance). The online tutoring system was built using
the Cognitive Tutor Authoring Tools (CTAT) [1], and hosted on TutorShop, a
web-based learning management system. Log data was sent from TutorShop to
DataShop [14] for storage and analysis.

Inside the tutor, participants could encounter three types of problems: Fal-
lacy/No Fallacy problems, Expert-Explanation problems, or Self-Explanation
problems. The number of each type of problem the participant encountered was
determined by the experimental condition the participant was assigned to. We
tested five different instructional designs, each with a different number of each
problem type (see Table 1).

Fallacy/No Fallacy Problems Fallacy/No Fallacy (FNF) problems involved
presenting the participant with an argument, and asking whether the argument
contains an Appeal to Ignorance or not. After selecting an answer, participants
received correctness feedback (i.e., correct or incorrect). Unlike the other kinds
of problems (Expert-Explanation and Self-Explanation), FNF problems did not
provide an explanation of why the argument does or does not contain an Appeal
to Ignorance. Explanations and definitions were intentionally omitted from FNF
problems, as they were designed to promote inductive rather than deductive
reasoning.
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Table 1. Number of Problem Types for Each Condition

Condition Instruction Practice

Baseline 6 Fallacy/No Fallacy 6 Fallacy/No Fallacy

4EE 2SE 4 Expert-Explanation,
2 Self-Explanation

6 Fallacy/No Fallacy

2EE 2SE 2 Expert-Explanation,
2 Self-Explanation

6 Fallacy/No Fallacy

4EE 4 Expert-Explanation 6 Fallacy/No Fallacy

2EE 2 Expert-Explanation 6 Fallacy/No Fallacy

Expert-Explanation Problems Some participants received either two or four
Expert-Explanation problems (depending on condition). Expert-Explanation prob-
lems involved presenting the participant with an argument, indicating that it
does or does not contain an Appeal to Ignorance, and then providing an ex-
planation as to why it does or does not. In the context of our tutor, these
Expert-Explanations provided direct instruction and were designed to promote
deductive reasoning.

Self-Explanation Problems In addition to Expert-Explanation problems,
some participants received two Self-Explanation problems (depending on con-
dition). Requiring students to check their understanding by providing an expla-
nation in their own words has been shown to be an effective instructional practice
[2]. In our tutor, Self-Explanation problems involved presenting the participant
with an argument, indicating that it does or does not contain an Appeal to Ig-
norance (as additional scaffolding), and then asking them to explain why it does
or does not contain an Appeal to Ignorance. After providing their explanation,
they were given an expert explanation that they could compare their explanation
to. Participants received no correctness feedback from the system about their
explanation.

2.3 Instructional Factors Analysis Model

To determine the relative effectiveness of these different types of problems, we
generated an Instructional Factors Analysis Model (IFM). IFM is a cognitive
modeling approach that is useful for modeling student performance when more
than one instructional intervention is used. IFM has been shown to outperform
other cognitive modeling approaches such as Additive Factor Models (AFM) and
Performance Factor Models (PFM) when multiple instructional interventions
were involved [6].

In our case, the instructional factors of interest are the three different types
of problems participants may see in the tutoring system. The general goal of



Instructional Factors Analysis of a Fallacy Tutoring System 7

Fig. 1. Screenshot of the tutor interface during a Fallacy/No Fallacy problem. After
selecting an answer, participants will be given correctness feedback only.

this model is to discover which types of problems are the most beneficial for
learning. More specifically, we were interested in whether problems that pro-
mote deductive reasoning (Expert-Explanation and Self-Explanation problems)
are more effective than inductive practice (Fallacy/No Fallacy problems). This
approach has two key advantages. First, if we compare the conditions to one an-
other directly, we fail to account for any instructional overlap across conditions.
Instead, an IFM model deconstructs each condition into the relevant features,
giving us more detailed insights into which instructional factors are effective,
regardless of condition. Second, IFM does not require that a direct observation
of student performance is generated from each instructional intervention. This
is crucial because both Expert-Explanation and Self-Explanation problems (as
they are presently implemented) do not generate direct observations of student
performance.

To implement an IFM, we first generated a table where each row corre-
sponded to a student’s attempt at a problem (see Table 2 for an example). The
columns of the table corresponded to the factors of a mixed-effect model. Our
fixed effects were the number of prior opportunities of each of the three kinds of
problems (Fallacy/No Fallacy, Expert-Explanation, and Self-Explanation). We
used student as a random effect. To calculate our outcome variable (Error Rate)
we first calculated the Assistance Score, which is equal to the number of incorrect
attempts and hint requests for a particular FNF problem. The Assistance Score
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Fig. 2. Screenshot of the tutor interface during an Expert-Explanation problem which
indicates whether an Appeal to Ignorance is present and explains why.

is then divided by the total number of attempts and hint requests to produce
the Error Rate.

We then implemented the model using the Python library StatsModels using
the following formulation:

mixedlm(ErrorRate ∼ FNF + EE + SE + Error(student)) (1)

Where FNF, EE, and SE represent the number prior FNF, EE, and SE prob-
lems. The term Error(student) represents our inclusion of the variable student
as a random effect. Note that our IFM implementation is slightly different from
the implementation reported in [6] in that we use linear regression (rather than
logistic regression) to accommodate our continuous outcome variable (Error
Rate).

3 Results & Discussion

In order to determine which problem type was most effective for learning, we
generated an instructional factors analysis model (IFM). Controlling for the time
spent in the tutor, we found that the number of prior Fallacy/No Fallacy (FNF)
problems and the number of prior Expert-Explanation (EE) problems were sig-
nificant predictors of performance (p < .001), while the number of prior Self-
Explanation (SE) problems was not. Though both FNF and EE problems seem
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Fig. 3. Screenshot of the tutor interface during a Self-Explanation Problem.

Table 2. Excerpt of Data Inputed into the IFM. Here students 1, 2, and 3 represent
students in the Baseline, 4EE 2SE, and 2EE 2SE conditions, respectively.

Student Problem Prior FNF Prior EE Prior SE Error Rate

Stu 1 1 0 0 0 .5
Stu 1 2 1 0 0 .75
Stu 2 1 0 4 2 0
Stu 3 1 0 2 2 .6

to be instructional, EE problems had more than twice the impact (β = −0.034)
on reducing Error Rate than FNF problems (β = −0.015). These results seem
to suggest that instruction aimed at promoting deductive reasoning is more ef-
fective than inductive practice. While true in this case, the relationship between
deductive and inductive instruction is likely different for different fallacies. Falla-
cies that are difficult to articulate may be more easily taught through inductive
examples. In our future work, we plan to expand the tutoring system to in-
clude many different kinds of informal fallacies. This serves the dual purpose of
discovering the best kind of instruction for each fallacy, while also potentially
revealing the features of a fallacy that inform the kinds of instruction that should
be prioritized when teaching it.

It is possible that we did not see an effect for Self-Explanation problems
because of the constraints of the experimental design. Because Self-Explanation
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problems require participants to have a working definition of the fallacy, they
must come after Expert-Explanation problems. In each of the conditions with
Self-Explanation problems, participants will have seen at least two Expert-
Explanation problems before they are required to explain the faulty logic them-
selves. It may be the case that the novelty of testing one’s own understanding
does not outweigh the diminishing returns of seeing another explanation of the
fallacy. One can imagine a (frustratingly difficult) design that begins with Self-
Explanation problems, asking participants to explain why an argument contains
an Appeal to Ignorance without any explanation of what an Appeal to Ignorance
is. In this hypothetical case, we may see Self-Explanation problems having a mea-
surable, positive effect similar to or greater than that of Expert-Explanation
problems. This is an avenue of research for future work.

We have demonstrated that both the deductive EE problems and the induc-
tive FNF problems are effective instructional interventions. What remains to be
seen is if participants can learn Appeal to Ignorance in the absence of any general
definitions or explanations (i.e., through inductive practice alone). Our Baseline
condition was specifically designed to answer this question. Recall that the Base-
line condition contains only FNF problems. Participants in this condition never
received a definition of Appeal to Ignorance or any explanations of why it was or
was not present in an argument. The only feedback they received was whether
or not they answered the problem correctly. If it is possible to learn Appeal
to Ignorance through inductive practice alone, we would expect the number of
prior practice opportunities to predict performance in the Baseline condition,
and we found that this is indeed the case. If we consider only participants in the
Baseline condition, the number of prior FNF problems is a significant predictor
of performance (p < .001). This suggests that while deductive instruction may
be more beneficial for learning, participants were still able to learn Appeal to
Ignorance through inductive practice alone.

3.1 Limitations and Future Work

The ultimate goal of this work is to develop a tutor that could be deployed to
late high school classrooms and freely accessible via the web for older adults.
While Amazon’s Mechanical Turk is a great resource for testing various imple-
mentations of the tutor, there are quality limitations that make collecting data
from a classroom preferable. In our future work, we plan to expand the tutor
to include many more types of informal fallacies. From this variety we hope to
uncover the hidden features that make a fallacy more easily learned through
either induction or deduction. Another simple, but important addition to our
experiment is a measure of enjoyment. It may be the case that you can learn
a fallacy through induction alone, but that the act of blindly searching for a
pattern is frustrating.
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4 Conclusion

The online tutoring system presented here is an initial foray into the vast and
complex domain of informal logic. Nevertheless, this relatively simple system
has allowed us to gain several key insights: First, it is possible to teach at least
one kind of informal fallacy in an online tutoring system. Second, it is possible
to learn Appeal to Ignorance using only inductive practice. However, the results
from our instructional factors analysis suggest that instruction aimed at promot-
ing deduction is more valuable than inductive practice. These insights are not
only useful for the development of future tutoring systems, but offer a promising
glimpse into the role that educational technology can play in creating accessible,
evidence-based critical thinking instruction.
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