Measuring Transfer of Data-Driven Code Features Across
Tasks in Alice

Nicholas Diana
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

ndiana@cmu.edu

Shuchi Grover
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Michael Eagle
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

meagle@cs.cmu.edu

Marie Bienkowski
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

John Stamper
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

john@stamper.org

Satabdi Basu
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

shuchig@cs.stanford.edu marie.bienkowski@sri.com satabdi.basu@sri.com

ABSTRACT

Previous research has demonstrated that low-level log data
from introductory programming environments like Alice can
be used to predict student outcomes and generate data-
driven rubric criteria. The success of these methods sug-
gests that the features used in these predictive models may
be crude representations of more fundamental introductory
programming skills. In this experiment we first replicated
previously reported methods using a novel dataset. Then,
we tested whether or not the features predictive of success on
one task are also predictive of other tasks. We found that we
could, with reasonable accuracy, use a model trained on data
from one task to predict a separate task. Our results sug-
gest that the features of successful predictive models contain
some amount of information that transfers across tasks.
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1. INTRODUCTION

Log data derived from students working through program-
ming exercises has the potential to aid educators working in
computer science education. Recent work has shown that
student learning outcomes can be predicted from low-level
log data long before students actually complete and sub-
mit their final program code [2]. However, it is unclear if
the data-driven features of these models are task specific or
generalizable across activities. While there has been some
work focused on gleaning pedagogical value from the fea-
tures of predictive models [1], there remains a disconnect
between the nature of human versus data-driven grading. In
an ideal world, a project grade in an introductory computer
science course is not only an assessment of the student’s

performance on the project, but, more fundamentally, is an
assessment of their progress toward mastering the key skills
of introductory programming. For human graders, course
projects simply provide opportunities for students to prac-
tice and demonstrate their skills. Data-driven graders, on
the other hand, are often limited in scope to the specifics
of a particular project (i.e., are by definition “driven by
the data”). Whether the features predictive of success in
one task are representative of more fundamental skills that
transfer across tasks remains to be seen. We hypothesize
that a subset of the features in a predictive model trained
on one task will be relevant for predicting other tasks, and
that we will be able to make predictions across tasks with
an accuracy comparable to within-task predictions.

1.1 Related Work

Log data from Alice can be used to support learning in a
number of ways. First, previous research has demonstrated
that a machine learning model trained on Alice log data
could be used to predict grades with reasonable accuracy.
Diana et al. [2] first broke down Alice log data into a vo-
cabulary of short terms, and then counted the number of
times each term appeared in a given student program. These
counts were used as features in a linear regression trained to
predict student grades. In addition to showing that grades
could be predicted using this method, the researchers also
integrated this predictive model into a prototype of an in-
structor dashboard. Using the dashboard, instructors could
monitor, in real-time, each student’s progress and their pre-
dicted grade (given their work up to that point). Instructors
could use these predicted grades to inform which students
they might assist, or which students might make good peer
tutors. The researchers found that the model’s performance
stabilized after only 9 minutes into a 30-minute class (though
this may be more reflective of the task students were asked
to do than the researchers’ method).

In addition to predicting student grades, log data has also be
used to model how students are progressing through a task.
For example, Hint Factory [9], uses an interaction network
created from previous student data to train a Markov Deci-
sion Process (MDP) of student problem-solving approaches



to serve as a domain model for automatic hint generation.
In the computer science domain, Rivers and Koedinger [8]
demonstrated that programming data can be used to auto-
matically generate feedback. Building off of this work, Di-
ana et al. [3] used Alice log data to demonstrate that low-
performing students could be paired with high-performing
peer tutors based on the similarity of their code, and how
those pairings could more than double the number of stu-
dents who were able to receive help in a typical class period.

In their most recent work, Diana et al. [1] found that both
the accuracy and interpretability of the features of their
model could be improved by using a more nuanced method
of feature-generation. Rather than breaking a student’s pro-
gram into arbitrary terms, the researchers used the presence
or absence of small snippets of code (referred to as code-
chunks) as features in the predictive model. They found
that this new method not only increased accuracy (reducing
root mean square error (RMSE) by 38%), but also seemed
to produce features that were more closely related to the
human-generated rubric criteria.

Though these results are promising, their generalizability is
limited by the fact that each of these advancements were
made using the same dataset and the same task. Demon-
strating that meaningful insights can be gleaned from Al-
ice log data requires that these methods be replicated with
another dataset, and preferably with one or more different
tasks. In the current study, we attempted to replicate the
above results, applying the above methods to two differ-
ent samples of students and three different tasks. We hy-
pothesized that student grades in the new dataset could be
predicted using both the Natural Language Processing and
Code-Chunk methods (with accuracies comparable to the
original results).

Replicating these methods on a series of novel tasks also pro-
vides us with an opportunity to test another critical hypoth-
esis. Previous research has suggested that a model’s ability
to identify code-chunks that are predictive of learning out-
comes may indicate that highly predictive code-chunks are
crude manifestations of key component skills. If we assume
that some of these key component skills transfer across tasks,
then it may be possible to predict a student’s performance
on a new task based on the student’s use of those component
skills in a previous task. We hypothesize that models trained
on one task could be used to predict another task (perhaps
with a slight decrease in accuracy). If shown to be true,
these results would bolster the generalizability and value of
data-driven methods in the context of a larger curriculum.

2. METHODS

2.1 The Alice Programming Environment

Alice is a block-based introductory programming environ-
ment (similar to Scratch or Blockly) that allows students
to create 3D animations and games while learning program-
ming fundamentals such as conditionals, iteration, and par-
allel processing [6]. Using a drag-and-drop interface, stu-
dents can “snap” blocks of code together to build chains of
actions and events. The drag-and-drop scaffolding limits im-
proper syntax and the frustration that accompanies it. Alice
is widely used in classrooms throughout the United States.

2.2 Data Collection

The log data used in this experiment were generated by 94
students. From those 94 students, 359,573 transactions were
collected. A transaction is logged each time a student makes
a change to their program, so each transaction represents the
state of a student’s program code up to that point, or what
we call a code-state. In Alice, students are the creators of
a digital world, where characters and objects move, speak,
and interact with one another. A code-state is essentially
an object that contains the properties and values of those
characters and their behaviors. For example, let’s assume
a student decides to make a frog character turn to the left.
The corresponding code-state will include: 1) an object for
the frog, 2) a property for the action the frog takes (e.g.,
“turn to the left”), and a value for that action indicating
how far to the left the frog should turn (e.g., 790 degrees”).
This representation captures the product of student actions
(rather than the actions themselves). However, because we
capture a code-state after each student action, we can infer
these actions by examining the changes in code-states over
time.

Capturing the student’s progression from the beginning of
the task to their final product has proven to be valuable for
some methods (e.g., peer-tutor matching), however for the
purposes of this experiment we will be focusing on only the
student’s final code-states (i.e., the last transactions logged
for each student). These final code-states represent the pro-
gram in its finished state (i.e., the program that students
turn in for a grade).

Over the course of a semester, students were asked to com-
plete three tasks using the Alice software. These tasks were
designed to test a student’s knowledge of introductory pro-
gramming concepts like conditionals and loops [5]. Because
students began and finished working on the tasks at different
points throughout the semester, the number of students per
task varies slightly (Cat and Mouse: n=56; Midas Touch:
n=>51; Frog and Pond: n=47). Additionally, while the cri-
teria of these tasks were well-specified, the open-ended na-
ture of the Alice environment resulted in students meeting
the specified criteria in a number of different ways. As you
might expect, some solutions completely satisfy the criteria
and would receive full credit, while others may demonstrate
the student’s conceptual understanding, but lack technical
correctness and would receive partial credit.

It is important to note that the Alice log data used in our
models was collected using an improved version of the ba-
sic logging mechanism already present in Alice. The data
generated by Alice’s built-in logging system was intended to
be used as a debugging tool for developers (not to be ana-
lyzed by learning scientists), and the process of converting
the linear log data into a representation of the student’s code
required a great deal of reverse engineering. Even then, the
built-in logging system failed to log steps that are crucial
for reconstruction, such as undo and redo actions. To avoid
these pitfalls, we decided to build a modified version of Al-
ice that includes a more robust logging system. The output
of this logging system mirrors the code-states that had pre-
viously been reverse-engineered. The main difference is a
higher degree of confidence in the fidelity of the code-state.
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Figure 1: The conversion of low-level log data to
code-states. Note how code-states are cumulative,
with each successive code-state being a modification
of the previous code-state.

Another significant improvement was how the data was col-
lected from the students’ individual machines. Alice has no
built in networking capabilities, so in the past, data was col-
lected manually from each machine by the researchers. Be-
cause we were interested in capturing code-states each time
the user makes a change, collecting data manually would be
impossible. Instead we integrated networking into our im-
proved logging system. With this in place, each action a
student takes inside Alice is silently logged and uploaded to
a database hosted on the educational data repository and
analysis service DataShop [10].

2.3 Code-state Bag-of-Words Method

Previous work on predicting student outcomes using Al-
ice log data has utilized two methods to make predictions.
The first method we will call the Code-state Bag of Words
method. In this method, the log data are first converted
into code-states (for a detailed description of this process,
see Diana et al. [2]). Then, the code-states are broken down
into a vocabulary of terms. The frequency of those terms
are used as features in a ridge regression model that predicts
student grades. In other words, this method suggests that
some terms are more frequently used by high-performing
students, and that even if we look at this simplified repre-
sentation of a code-state’s content (largely devoid of context
and structure), we can still make reasonably accurate pre-
dictions about student performance.

Given the large number of features that would likely have
little predictive power, the researchers opted to use a ridge
regression. Ridge regression shrinks the coefficients of less
important factors, which, at least in this case, improves pre-
diction accuracy.

2.4 Code-chunk Frequency Method

The second method, which we will call the Code-chunk Fre-
quency method, attempts to recapture some of the context
stripped away in the Code-state Bag of Words method. In-
stead of using the frequencies of arbitrary terms, it uses the
frequencies of small snippets of code, which we call code-
chunks. To covert a code-state into a set of code-chunks,
each level of the code-state object is translated into a single-

Code-State Code-Chunks

"id": "World",

"methods": [
{ /2{ "type": "methods”

"id": "scene 1 method",
"type": "methods"
"children": [

{
"SUBJECT": "Halo",
"TARGET": "douglasTheTree",
"id":"__Unnamed5__", ]
"index": "5",
"name": "turn to face"

h

"id":"__Unnamed6__",

:index" s L T "index": "6",
. "name": "Do together"

"SUBJECT": "Halo",
"TARGET": "douglasTheTree",
tindex": 5",

"name": "turn to face"

Figure 2: An example of how code-states are decom-
posed into code-chunks. Note that overly specific
parameters like “id” are dropped. Additionally, pa-
rameters that represent lists of child nodes are also
dropped. Instead, a new code-chunk is created for
each of the child nodes.

level code-chunk. If a parameter represents a list of child
nodes, that parameter is ignored. Instead, a new code-chunk
is created for each of the child nodes. Additionally, overly
specific parameters such as “d” are ignored. Including these
parameters would give the code-chunk a degree of specificity
that makes finding functionally identical code-chunks more
difficult. See Figure 2 for an example conversion from code-
state to code-chunks.

Once we have converted each code-state into a set of code-
chunks, we can use the frequencies of each code-chunk (within
the code-state) as features in our regression. We used L1
regularization to select features via a lasso regression. This
process reduces features by encouraging weights to shrink to
zero. Features with a weight of zero are effectively dropped
from the model, reducing the number of features [4]. Note
that the ridge regression used in the Code-state Bag of Words
method and the lasso regression used in this method gener-
ally serve the same purpose, and the choice to use one over
another in previous work was primarily determined by which
regularization yielded the best performance. As this is pri-
marily a replication study, for the sake of consistency we will
also use a ridge regression for the first method and a lasso
regression for the second.

To measure model performance, we first used a min-max
scaler to normalize student grades on each of the tasks such
that the data is scaled to a fixed range from 0 to 1. Then, we
compared the predicted grades to the known actual grades
to produce the Root Mean Square Error (RMSE). Each re-
ported value is the average of a 10 fold Shuffle-Split Cross-
Validation. For each fold, we randomly chose 10% of the
students to use in the testing set. The remaining 90% of stu-
dents were assigned to the training set. The python package
scikit-learn was used for both cross-validation and regression
[7]. In all methods, highly correlated features (r > 0.9) are



Table 1: RMSE values for each of the 9 possible training-task/testing-task pairs. Note: These values are
relative to normalized task grades that range from 0 to 1.

Testing-Task

Frog & Pond Cat & Mouse Midas Touch
Frog & Pond 0.135 0.248 0.169
Training Task Cat & Mouse 0.158 0.265 0.174
Midas Touch 0.198 0.239 0.129

Table 2: A selection of code-chunks that were frequently important for predicting learning outcomes across
different tasks. The similarity of many of these code-chunks to transferable introductory programming
concepts is clear. Also listed is the percentage of all cross-task prediction folds (n=60) that selected the
corresponding code-chunk as part of the regularization process. These relatively high percentages indicate
that these code-chunks were frequently selected as important features for cross-task predictions.

Excerpt of Code-chunk % Cross-Task Models that
Selected this Code-Chunk

{"Type": "DoInOrder"} 65%

{"Type": "LoopNInOrder", "count": "null", "index": "index", 63%
"end": "?", "start": "0", "increment": "1"}

{"Type": "PointOfViewAnimation", "subject": "camera"} 50%

{"Type": "PropertyAnimation", "value": "0"} 45%

{"Type": "DoTogether"} 33%

{"Type": "IfElseInOrder", "condition": 33%
"edu.cmu.cs.stage3.alice.core.question..."}

removed from the feature set. again with some variation across tasks (Frog and Pond RMSE=

0.135; Cat and Mouse RMSE=0.265; Midas Touch RMSE=0.129).

3. RESULTS & DISCUSSION

Before exploring whether or not code-chunks transfer across-
tasks, we first replicated two prior analyses, the Code-state
Bag of Words method and the Code-chunk Frequency method,
using our dataset. Replicating these methods not only lays
the groundwork for subsequent analysis, but also tests the
degree to which these methods generalize to novel tasks.

3.1 Code-state Bag of Words Method

To replicate the Code-state Bag of Words method, we first
generated a vocabulary of terms from the students’ code-
states, and then used the frequencies of those terms within
a student’s final code state as features in a ridge regres-
sion model. We found that, on average, this model’s per-
formance was comparable (RMSE=0.351) to previously re-
ported performance (RMSE=0.384), with some variation
across tasks (Frog and Pond RMSE=0.282; Cat and Mouse
RMSE=0.324; Midas Touch RMSE=0.448).

3.2 Code-Chunk Method

To replicate the Code-chunk Frequency method, we first con-
verted each code-state into a set of code-chunks, and then
used the frequencies of those code-chunks as features in a
lasso regression model (a=.01). We found that, on average,
this model’s performance was slightly better (RMSE=0.176)
than the previously reported performance (RMSE=0.235),

3.3 Cross-Task Predictions

The above results demonstrate that previously reported meth-
ods for analyzing Alice log data can be successfully applied
to a variety of different tasks. Diana et al. [1] have ar-
gued that the ability of our models to identify code-chunks
that are predictive of learning outcomes may indicate that
highly predictive code-chunks are crude manifestations of
key component skills. If we assume that some of these key
component skills transfer across tasks, then we may be able
to predict a student’s performance on a new task based on
the student’s use of those component skills in a previous
task. Because we have data from multiple tasks, we can test
the degree to which the code-chunks that are predictive for
one task are also predictive for others.

To test this, we trained our lasso regression using data from
one task, and then tested how well the model could predict
grades for a different task. We did this for each of the 9 pos-
sible combinations of training-task/testing-task pairs. Table
1 lists the RMSE values for each pair.

Note: To select subjects for the training and testing sets, we
first selected only those students who had grades for both
tasks (i.e., students who had completed both tasks. This list
of users is split into training and testing sets. This eliminates



the possibility of choosing the same user for both the training
and testing sets.

Discrepancies between scores may have to do with the nature
or difficulty of the specific tasks. For instance, the model
seems to have a greater difficulty predicting grades for the
Cat & Mouse, even when trained on data from the same
task. Future work will explore how task features interact
with model performance.

The RMSE values reported in Table 1 demonstrate that a
model trained on one task can be used to predict perfor-
mance on a separate task with reasonable accuracy. At the
very least, these results suggest 1) that there are some pat-
terns of programming that are associated with learning out-
comes, and 2) that these patterns are relevant to learning
outcomes across different tasks. This runs contrary to the
hypothesis that data-driven prediction methods are limited
in scope to a specific course project, and instead implies that
data-driven methods can be used to access crude represen-
tations of fundamental introductory programming skills.

An examination of the specific code-chunks points to a sim-
ilar conclusion. Table 2 lists some of the code-chunks that
were selected most frequently in cross-task predictions. In
other words, within the 60 cross-task prediction folds (i.e., 6
cross-task predictions, 10 folds per task combination), these
code-chunks were frequently selected during the regulariza-
tion process. In these code-chunks, we see evidence of fa-
miliar introductory programming concepts like condition-
als, (e.g., “IfElseInOrder”), iteration (“LoopNInOrder”), and
even parallel processing (e.g., “DoTogether”). These con-
cepts align closely to the programming concepts these tasks
were originally designed to teach. Table 2 also lists the per-
centage of cross-task prediction folds that each of the code-
chunks appeared in. High percentages indicate that these
code-chunks were frequently selected as important features
for cross-task predictions.

4. CONCLUSION

In this study, we first replicated two methods used to predict
student outcomes using log data from the Alice introductory
programming environment. We found that our RMSE val-
ues were comparable, or slightly better, than previously re-
ported values. Much of the recent work on analyzing log
data from Alice has made use of the same dataset [11],
so demonstrating that these methods generalize to a novel
dataset strengthens claims made in previous research.

In addition to replicating previous methods using a novel
dataset, we expanded on prior work by testing a critical hy-
pothesis: The features of a predictive model may be crude
representations of more fundamental introductory program-
ming skills. We demonstrated that features predictive of
one task are also predictive of other tasks, suggesting that
these features contain some information that transfers across
tasks.

Taken together, these findings signify a small step toward
uncovering evidence of general programming knowledge com-
ponents in low-level log data, and underscore the value of
analyzing introductory programming log data in computer
science education.
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