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ABSTRACT
In programming task, problem solving procedure contains
rich information about how students use conceptual and
procedural knowledge to solve programming task. In this
paper, we propose a sequence clustering method over the
code snapshots to model students’ programming path. For
a given programming task, the difference between code snap-
shots to a perfect solution is first computed using tree edit
distance. Then, this distance value is used to quantify each
code snapshot and generate the distance sequence. Finally,
we use dynamic time warping and agglomerative clustering
algorithm to compute the sequence distance and cluster the
sequences. The clustering results show that there are five
different programming path clusters among students.
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1. INTRODUCTION
A programming task is genrally a multi-step task where stu-
dents often start with an initial state and change their state
by inserting or deleting code to reach the final state. The
state transition sequence constitutes a programming path
from initial state to the final state. Programming pathways
contain rich information that can be used widely in pattern
detection [3], hint generation [2, 4] and knowledge tracing
[6] .
A fundamental problem with programming pathways is how
to represent and quantify the trajectories, which has seen
great interests from literature. Piech et al. [3] modeled stu-
dents’ programming process using Hidden Markov Model
(HMM). Rivers and Koedinger [4] constructed an optimal
programming path from a partial solution to a correct solu-
tion and used this path to generate hints. All intermediate
states in the path are evaluated by a desirability metric that
is weighted sum of their popularity, performance, closeness
to a correct solution. Piech et al.[2] assumed the amount of

time required for an average student to generate a partial
solution is a Poisson process, the path from partial solution
to a perfect solution is defined as the smallest expected time
to be generated by the average successful student. In recent
work, Wang et al. [6] used the represented learning tech-
nology to create program embedding, which was fed into a
recurrent neural network model to perform prediction.
In this work, we build a simple yet efficient trajectory quan-
tification method based on Tree Edit Distance (TED) and
Dynamic Time Warping (DTW), and then apply a hierarchi-
cal clustering algorithm to find different programming path
patterns. This study is inspired by the Possion path pro-
posed by Piech et al.[2] , but differs in that we build the
metrics directly over the raw abstract syntax tree (AST)
and AST sequences, instead of programming time.

2. METHOD
Step 1 : Compute the distance from partial solution
to the given final solution. To understand how stu-
dents program and make progress step by step, we first need
to distinguish students’ different programming states (code
snapshots). In this work, every student’s code snapshots
were captured and stored as AST format. When dealing
with tree data, the evaluation of tree similarities is of great
interest. A standard measure for the tree similarity, suc-
cessfully used in numerous applications, is the TED. TED
is defined as the minimum cost sequence of node edit op-
erations that transform one tree into another [5]. In this
work, we used a very popular TED metrics, Zhang Shasha
tree edit distance [7] to compute the difference between the
intermediate snapshots to the given perfect solution.
Step 2 : Compute the distance between different
paths. The TED between any partial solution and the best
solution demonstrates the minimum numbers of inserting
and deleting that need to be applied to the AST of current
solution to transform it into the AST of the best solution.
In other words, this distance is a indicator how close each
intermediate solution approaches the best solution, we call
it approaching index. With approaching index, we can
quantify each student’s programming path as a sequence of
approaching indexes from his/her initial solution to final so-
lution. To find the trend of different programming path, a
similarity metrics is needed to distinguish different program-
ming path. Note that different students may have program-
ming paths of different lengths because they may take the
different number of attempts to reach the best solution. So,
the key problem is to how to compute the distance between
sequences with unequal length. We use a well-known tech-



nology Dynamic Time Warping (DTW) [1] to compute the
similarity between different paths, generating the distance
matrix of programming path.
Step 3: Sequence clustering using hierarchical clus-
tering. After the similarity matrix has been established,
we feed it into hierarchical clustering algorithm to find the
path clusters. In the following experiment, we tested the hi-
erarchical agglomerative clustering with four different clus-
ter similarity measures, i.e., Ward, single,average and com-
pleted linkage, and found the Ward method provided the
best clustering results.

3. DATASET AND EVALUATION
We implemented our idea on a block-based programming
dataset that collected by Hour of Code. The dataset1 covers
three basic computational thinking concept concepts loops,
if-else statements and nested statements. The dataset con-
tains 79,553 unique code submissions, and 83,955 unique
programming trajectories made by 263,569 students. For
computational ease, we randomly sampled 20,000 program-
ming trajectories from the dataset to conduct clustering.
Fig. 1 shows the five programming path clusters found by
the proposed method.
As illustrated in Fig. 1 , the students in Cluster 1 and Clus-
ter 2 have a shorter path than the students in the other
three clusters, and most of student in these two clusters
failed to find the perfect solution. If we compare Cluster
1 and 2, we can see that the students in Cluster 2 have
a poor initial solution because the average approaching in-
dex of Cluster 2 is around 125 that is evidently larger than
any of the other clusters. This finding means that the stu-
dents in Cluster 1 may have poor conceptual and procedural
knowledge to convert the problem to the conceptual task, or
they are not familiar with the programming language. The
overall upward trend in Cluster 1 and 2 demonstrates most
students in the two clusters neither iteratively improve their
program nor find the perfect solution. In contrast, the aver-
age approaching indicators in Cluster 3 and 4 are declined
smoothly, which demonstrates most students in these clus-
ters refined there program step by step. Also, if we compare
Cluster 3 and 4, we can find that students in Cluster 3 have
a better start point and the average approaching indicator
is around 30 that is very close to the perfect solution. The
last cluster we found is Cluster 5, which has the longest
programming path compared to other clusters. The average
approaching indicator of start solution in Cluster 5 is around
50, which is similar to Cluster 2 and 4. Surprisingly, while
students in Cluster 5 have a reasonably good initial state,
their average approaching indexes are neither increased nor
decreased during the programming process, which may mean
they did not make a drastic revision to their program and
most of them also could not complete the task perfectly.

4. CONCLUSION
We have shown how a programming progress can be trans-
formed into a real-valued sequence based on TED and DTW.
Then we demonstrated that the DTW distance matrix can
be used in an agglomerative clustering algorithm to find
the path pattern. We implemented this idea on a sampled
dataset with 20,000 programming paths and found five dif-
ferent programming patterns. In the future work, we will

1https://code.org/research
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Figure 1: Programming path clusters. The black
dashed line shows the change of average approaching
indicator in each cluster

improve the proposed method with other TEDs and se-
quence similarity metrics, and extend it to larger program-
ming datasets. We also plan to feed the approaching in-
dicator sequence into recurrent neural network to build a
knowledge tracing model that is based on the programming
paths within a single task.
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