
 

Towards an Intelligent Tutoring System for 
Propositional Proof Construction 

 
Marvin CROY a,1, Tiffany BARNES b and John STAMPER b 

a Department of Philosophy, The University of North Carolina at Charlotte 

b Department of Computer Science 

Abstract. This article reports on recent efforts to develop an intelligent tutoring 
system for proof construction in propositional logic.  The report centers on data 
derived from an undergraduate, general education course in Deductive Logic 
taught at the University of North Carolina at Charlotte.  Within this curriculum, 
students use instructional java applets to practice state-transition problem solving, 
truth functional analysis, proof construction, and other aspects of propositional 
logic.  Two project goals are addressed here: 1) identifying at-risk students at an 
early stage in the semester, and 2) generating a visual representation of student 
proof efforts as a step toward understanding those efforts.  Also discussed is the 
prospect for developing a Markov Decision Process approach to providing 
students with individualized help. 
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Introduction 

Intelligent tutoring systems generally involve three component models: one of the 
student, one of the teacher/pedagogical technique, and one of the subject matter [1].  
Each model presents its own challenge in respect to construction and effective use.  
One issue in respect to student models concerns their content, i.e., what student 
characteristics should be included, what aspects of performance should be represented, 
etc.  One challenge in respect to pedagogical technique concerns the form and timing 
of help [2].  Perhaps the most challenging task concerns the explication of expert 
knowledge concerning the subject matter and how this knowledge relates to 
pedagogical technique.  The number of hours required to achieve this task are normally 
prohibitive and certainly constitute one of the most costly components of an intelligent 
tutoring system [3]. 
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The activities reported here address a number of these challenges in respect to 
teaching deductive proof construction in propositional logic.  In respect to student 
models, our aim is to discover variables that will identify the most at-risk students at an 
early stage in the course.  Once we can reliably predict which students might need 
special help, the challenge is to design activities that will provide this individualized 
assistance.  One objective is to supply individualized help as students use instructional 
programs that facilitate the learning of proof construction.  The general nature of this 
assistance is guided by visual representations of student problem solving efforts, and 
by a novel approach to leveraging past student data to provide intelligent assistance.  
This approach is based on using Markov Decision Processes (MDPs) to represent 
student paths connecting premises and conclusion [4]. 

1. The Course Curriculum 

Our Deductive Logic serves general education students during their first two years of 
undergraduate study.  This course begins with state transition problem solving.  
Students practice a number of classic problems such as the Towers of Hanoi, Water 
Jugs, and Jealous Husbands [5].  In this context a problem is defined in terms of a 
starting state, goal state, and transition rules.  This readily maps on to deductive proof 
problems via a premise set (starting state), a conclusion (goal state), and a set of valid 
forms of inference/replacement (transition) rules [6].  In particular, working backwards 
from goal to starting state translates into working from conclusion to premises, and this 
provides an alternative strategy for discovering proofs [7,8].  The mastery of proof 
construction and valid inference-making is central to the course.  The skills developed 
in proof construction are made use of in subsequent course topics, such as SQL-type 
database searching, decision making in the context of structured documents (e.g., 
executing Internal Revenue Service tax form instructions), and argument analysis in 
natural language.  This point is crucial since failure to master deductive inference and 
proof construction becomes evident when students reconstruct natural language 
passages via deductive patterns of inference.   

Students face examples similar to the example shown in Table 1.  Students are 
expected to recognize premise/conclusion relationships, reformulate statements, 
explicate implicit premises, identify assumed synonyms, delete unnecessary 
information, and fit the argument to a valid form where possible (which sometimes 
requires the application of rules of replacement).  In particular, when students discover 
proofs by working backwards from conclusion to premises, they postulate sub-goal 
expressions that, if ultimately justified, lead directly to the proof’s conclusion.  
Mastering this process facilitates the ability to identify implicit premises in natural 
language arguments.  In the example given in Table 1, notice that the second premise 
(“If x can be attained only through the methods of the natural sciences, then x is based 
on generally observable facts”) is not given in the original argument and must be 
explicated by the student.  Familiarity with the rule of Hypothetical Syllogism aids in 
making this explication.  While the argument given for reconstruction may seem trivial, 
this is exactly the kind of problem that weaker students fail to complete. 

 
 



Table 1. Sample argument and components of its reconstruction.  

Argument and Reconstruction Basis for Reconstruction 
“Finally there is the triumphant 
idea of positivism, that valid 
knowledge can be attained only 
through the methods of the 
natural sciences and hence that no 
knowledge is genuine unless it is 
based on generally observable 
facts” [9]. 
 

1) Distinguish premise(s)/conclusion  
    (conclusion indicator = ‘hence' ) 
2) Fill in information 
    (filled in referent for ‘it’) 
    (supplied implicit premise) 
3) Delete information 
    (Deleted 'Finally there is the triumphant idea 
of positivism, that’ on basis of being irrelevant 
to the inference pattern) 
4) Reform statements into conditionals 
    (universal subjects / necessary conditions) 
5) Assumed Synonyms 
    (‘valid knowledge’ = ‘genuine knowledge’) 

Given premise:     If A then B 
Implicit premise:  If B then C 
Conclusion:          If A then C 

A = ‘x is valid knowledge’ 
B = ‘x can be attained only through the  
       methods of the natural sciences’ 
C = ‘x is  based on generally observable  
        facts’ 

 
 
Throughout the course students make use of instructional Java applets2.  These 

programs not only provide opportunities for students to develop and hone relevant 
skills, but they also support the timely collection of data on student performance.  This 
is particularly important during the early weeks of the semester.   During this period, 
students use applets to complete state transition problems, carry out truth functional 
evaluation, and practice the application of deductive proof rules.  Two applets are 
central to this curriculum. “Justified Thought” (JT) provides practice with the 
inference/replacement rule set.  JT uses mal-rules and complex instantiation to build a 
deep understanding of rule applications. The program provides three levels of 
increasing difficulty for both inference (implicational) and replacement (equivalence) 
rules.  Students must judge whether particular expressions do or do not conform to 
various rule patterns.  In level one, some rule pattern always fits the given expression, 
which JT constructs by instantiating rule forms with simple statement letters.  In higher 
levels of JT, some expressions fit none of the rule patterns shown.  In these cases, the 
expression fits a mal-rule, a deviant of the actual rule.  Moreover, higher levels of JT 
use complex expressions to instantiate rule variables.   

Practice with JT occurs in parallel with work in “Deep Thought” (DT), a Java 
applet that provides a graphic environment for building proofs.  DT supports both 
working forwards and backwards and, along with JT, maintains detailed records of 
student efforts.  Developing prowess in constructing proofs provides the main 
challenge of the course.  When investigating the difficulties students have in learning 
proof construction, attention is naturally drawn to two main skills:  rule application and 
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strategic planning.  Logic textbooks almost invariably isolate these activities by 
presenting rule application exercises prior to full proof problems.  Nevertheless, it 
should be understood that the selection and ordering of rule applications can be shaped 
by strategic considerations.  One question of interest is how rule application and 
strategy selection interact, whether positively or negatively.  Obviously, there is a 
positive interaction when strategy selection (e.g., breaking expressions down into 
components) suggests the application of various rules (e.g. Simplification).  However, 
when strategic thinking proposes a highly useful intermediate expression that could 
lead to the conclusion, similarities between this proposed sub-goal expression and 
some premise (or previously derived expression) may produce attempted 
misapplications of rules.  For instance, when ‘not A’ constitutes a goal expression, 
students are temped to misapply the rule of Simplification to the premise expression 
‘not (A and B)’.  Here, the main connective of the premise expression is actually a 
negation and not a conjunction as required for application of Simplification. 

Another aspect of our efforts concerns the question of what contributes to proof 
problem difficulty and how these conditions relate to the connection between proof 
construction and argument reconstruction.  As suggested in the sample argument in 
Table 1, argument reconstruction often involves the removal of irrelevant information.  
The analog within proof construction is superfluous premises.  It is unfortunate that 
logic textbooks do not routinely present proof problems with unnecessary premises.  
Particularly when the superfluous premises contain components similar to the 
components of other premises or the conclusion, problem difficulty increases, and the 
required distinction between the relevant and the irrelevant provides part of the bridge 
to argument reconstruction.  Our visualization method helps identify other problem 
areas in proof construction that we can later analyze for their impact on argument 
reconstruction. 

2. The Search for Early Predictors 

The first data set analyzed includes records from 85 students enrolled in three sections 
of Deductive Logic during 2007.  Data from these students include: 1) scores on a pre- 
and post-test (number correct out of 25 multiple-choice items, primarily focused on 
validity judgments and deductive inferential tasks), 2) performance measures from a 
state-transition problem (Jealous Husbands: number of incorrect moves), 3) success 
rate for level 3 performance on truth functional evaluation of complicated logical 
expressions, 4) success rate for levels 1, 2, and 3 of the JT rule practice applet, 5) two 
exam scores (mid-term and final), and 6) course grade (expressed as percent of total 
possible points on exams plus additional assignments).   

In order to correctly identify at-risk students early in the semester, we searched for 
items from our data set that could provide a significant correlation with exam scores 
and final course grade. Pearson correlations were run using SPSS statistical software to 
analyze the correlation between the exam scores, final course grade, and the following 
predictors: pre-test score, Jealous Husbands Puzzle success (measured by number of 
solution steps and incorrect moves), Truth Functional Analysis success rate, and 
Justified Thought success rates for levels 1, 2, and 3. The resulting correlations can be 
seen in Table 2. 

 
 



Table 2. Correlations of potential predictors with course performance. 

Course 
Performance Pre-test  

Jealous 
Husbands 
Puzzle 

Truth 
Functional 
Analysis 

JT Rule 
Exercise 
Level 1  

JT Rule 
Exercise 
Level 2  

JT Rule 
Exercise 
Level 3 

Exam 1 .359 (*) .072 .238 (*) .440 (**) .484 (**) .617 (**) 
Exam 2 .129 -.413 (**) .198 .525 (**) .447 (**) .302 (*) 
Exam Total .271 -.196 .249 (*) .566 (**) .533 (**) .541 (**) 
Course Grade .242 -.305 .173 .573 (**) .559 (**) .491 (**) 
* significant at .05 level 
** significant at .01 level 

 
 
From the results, there are two interesting points that immediately stand out.  First, 

the pre-test is not the most reliable predictor for success in the class.  Although pre-test 
performance had some correlation with exam 1 (significant at p=.05, but not at p=.01), 
it did not correlate well with Exam 2 or final course grade. This result was surprising, 
since we originally felt the pre-test would predict class performance. However, the 
lower correlation between the pre-test and the final course grade is a healthy indicator 
that learning can occur and student performance does not depend entirely on prior 
preparation. 

The other main finding from these statistics is how well the JT success rates 
correlate with exam scores and course grade.  Based on this, we created metrics using 
the JT success rates as our early predictors.  The goals of our metrics were to identify 
as many at-risk students as possible while minimizing the number of students 
incorrectly assigned to this category.  To further this investigation, we selected a past 
class (Spring 2007, with 30 students) to serve as a starting case (training set), and the 
most recent class (Summer 2007, with 20 students) as a test case (trial set).  In the 
training set, low course performance was defined in terms of a course grade of 65% or 
lower.  We determined cutoff values for each of the three levels on JT (JT1, JT2, and 
JT3), and examined how well they identified low-performing students.   

The extent to which various success rates on JT correctly identified students with 
low performance is shown in Table 3.  This table shows the number of students who 
were correctly classified as low-performing (course grade of less than sixty-five 
percent) according to five different metrics based on JT success rates:  less than 90% 
on JT1, less than 70% on JT2, less than 75% on JT3, a combination of each of these 
three, and a combination of only JT2 with JT3 performance.  Table 4 also shows the 
number of students misclassified by each of these metrics.  Misclassification occurs as 
false negatives (students who scored above the metric success rate but who were 
actually low-performing) and as false positives (students who scored below the metric 
success rate but who were not low performing).  The results show that the best results 
occur for a combination of JT2 with JT3.  This metric correctly classifies 25 students, 
generates no false negatives, and identifies only 5 false positives.  False positives, 
students inaccurately identified as being at-risk, are not particularly troublesome, since 
these students would likely be given more assistance than actually required.  False 
negatives, at-risk students treated as not being so, are of more concern, and their low 
numbers here are encouraging. 

 



 
Table 3.  Number of low-performing students identified by JT performance levels (Training Set). 

 
JT1 Success 
Rate < 90% 

JT2 Success  
Rate < 70% 

JT3 Success   
Rate < 75% JT1, 2, & 3 JT2 & JT3 

Correctly Categorized 22 27 22 23 25 

False Negatives 5 2 3 0 0 

False Positives 3 1 5 7 5 

 

 
The results of testing these metrics against data from the most recent logic course 

are shown in Table 4.  Once again, many more correct than incorrect classifications are 
made using any of the previously defined metrics, and most misclassifications are false 
positives.  However, the metric that combines performance on JT2 with JT3 was 
slightly outdone by the metric that focuses only on JT2.  In sum, the metrics defined in 
the training set do a good job of classifying students in ways that, from a pedagogical 
standpoint, reliably identify at-risk students.  The best of the JT metrics serve to predict 
students who are candidates for special attention or assistance.  Answering questions 
about the nature of that assistance now becomes even more crucial. 

Clearly, the first step in addressing at-risk students is to ensure that these students 
complete practice with JT, and particularly JT2, with at least 70% correct.  However, 
the next step in assisting students is not as clear. In the next section, we discuss one 
alternative for providing proof hints within DT that will specifically benefit at-risk 
students. 

3. Visualizing the Nature and Variation of Student Proofs 

Visual maps of student proof efforts serve to shape new questions about the how and 
why of student thinking.  In addition, graphic representation provides a snapshot of the 
range of variation in student efforts.  A greater range of variation increases the 
challenge of providing individualized help.   

We use Markov Decision Processes to visualize student proof attempts, as in [4]. 
A Markov decision process (MDP) is defined by its state set S, action set A, transition 
probabilities P, and a reward function R [10].  On executing action a in state s the  

 
 

Table 4.  Number of low-performing students identified by JT performance levels (Trial Set). 

 
JT1 Success 
Rate < 90% 

JT2 Success  
Rate < 70% 

JT3 Success 
Rate < 75% JT1, 2, & 3 JT2 & JT3 

Correctly Categorized 13 17 15 12 15 

False Negatives 4 1 1 1 1 

False Positives 3 1 5 7 4 

 
 



probability of transitioning to state s´ is denoted P(s´ | s, a) and the expected reward 
associated with that transition is denoted R(s´ | s, a).  For a particular point in a 
student’s proof, our method takes the current premises and the conclusion as the state, 
and the student’s input as the action.  Therefore, each proof attempt can be seen as a 
graph with a sequence of states (each describing the solution up to the current point), 
connected by actions.  We combine all student solution graphs into a single graph, by 
taking the union of all states and actions, and mapping identical states to one another.   

Once this graph is constructed, it represents all of the paths students have taken in 
working a proof.  Typically, a reinforcement learning technique such as value iteration 
Bellman backup [10] is used to assign reward values to all states in the MDP. The 
rewards for each state indicate how close to the goal a state is, while probabilities of 
each transition reveal the frequency of taking a certain action in a certain state.  Once 
the rewards are calculated, the “best” solution to the problem corresponds to taking a 
path through the graph, choosing nodes of maximum reward to reach the goal state 
[10]. For this paper, just one step of value iteration was performed to cascade goal 
values through the MDP. 

This experiment uses data from the Spring 2005 and Fall 2005 semesters of the 
first author’s Deductive Logic course, with a total of 69 students.  After lectures on the 
topic and practice using JT, students use DT to solve 12 logic proofs as homework. We 
extracted 69 students’ attempts at solutions to DT proof 1.3. Of these 69 attempts, 52 
(75%) were successful proofs, while 17 were incomplete (25%).  After cleaning the 
data, we load the proofs into a database and build a graph for the data. We then set a 
large reward for the goal state (100) and penalties for incorrect states (10) and a cost 
for taking each action (1). Setting a non-zero cost on actions penalizes longer solutions 
(but we set this at 1/10 the cost of taking an incorrect step).  These values may need to 
be adjusted for different problems.  

We then created an MDP as described above for the proof data, resulting in a set of 
193 states and associated reward values, and 272 actions. Using Excel, we assigned 
labels to each state in the MDP (using the latest premises added), colors for errors, state 
values, and action frequencies, and prepared the data for display. We used GraphViz to 
display the output.  Table 5 shows the legend for nodes and edges. After graphing the 
MDP, we continually refined the visualization to explore questions about the data. 

Figure 1 shows the MDP restricted to the actions that at least 4 students have taken 
(since the overall MDP is too large to view here). Actions are labeled with a B for 
backwards steps and F for forward steps, followed by a dash and the rule used.  The 
starting state of the problem contains 3 given premises: (~AvB)>(C&D),A>E, ~E, and 
the result: ?D. In DT, the premises to be proven are denoted with ?, and when a student 
works backwards, the original result is shown to be justified by the intermediate  

 
 

Table 5. Legend for MDP edges and nodes 

Edges  (Values=Frequency) Nodes (Values=Rewards) 

 

  
 



expressions the student postulates, and the intermediate expressions become new 
provisional  postulates.  For example, many students work backward from ?D using 
simplification (B-SIMP) to postulate the intermediate expression ?C&D.  As shown at 
the top of Figure 1, many students take this as a first step. In this step, the ? is removed 
from D and remains on ?C&D until it is justified.   

In Figure 1, we see that there are a number of ways students solve problem 1.3.  
The leftmost part of Figure 1 shows the students who worked primarily backward in 
solving 1.3, while the central area shows students with forward and mixed approaches. 
The rightmost part shows an abandoned attempt to work backwards via MP.  From this 
diagram, we note that students working primarily backward seem to have much more 
trouble determining that they must prove ~A than those students who started using a 
forward approach.  We are planning to build a tool that enables instructors to 
interactively view student solutions and understand student thinking and approaches to 
problems. 

Figure 2 shows the most frequent forwards actions, taken by at least 9 students 
each.  Sixteen students take the first F-MT action, and nine (56%) of these take F-ADD 
and achieve the goal (taking the remaining steps shown) through forward-only actions.  
The 7 other students taking F-MT as a first step used a mixed approach to the problem. 

 
 

 
Figure 1. MDP of DT1.3 restricted to actions taken by at least 4 students. 

 
 



Figure 2, MDP restricted to frequent Forward actions, with at least 9 students taking each action. 

 
 
Figure 3 shows the most frequent backwards actions, taken by at least 17 students 

each.  Fifty-two students take the first B-SIMP action, and 45 of these take B-MP to 
derive ?~AvB.  Then, about half (24) of the students derive ?B, which cannot be 
proven, and so delete this node and try again.  A third of students (17) try using B-MT 
in error. Eventually, 41 students correctly derive ?~A and 35 of these reach the goal 
using backwards-only actions.  Many of the remaining 17 students eventually succeed 
using a mixed approach, but this analysis shows a strong preference of students toward 
using backward-only approaches on this problem.  This most likely reflects a focus on 
this approach in lectures, and also reflects the relative complexity of the premises in 
this problem. Although there are only 4 main actions that must be taken to solve this 
proof, we see that students do search to find correct approaches. 

In looking at both backwards-only and forwards-only approaches, we see the most 
divergence for students in the steps connecting ~A with ~AvB, using the addition rule 
(ADD).  This suggests that students do not naturally think of applying addition.  The 
first two authors have observed this anecdotally, but our visualization confirms this 
reluctance, and demonstrates that students attempt a number of other approaches before 
trying addition.  Based on these findings, we can suggest more discussion of the 
addition rule in class, and can also plan to build hints into DT when addition applies. In 
the next section, we discuss how we plan to use the data generated by MDPs and the 
associated visualizations to target help to individual students using DT. 

4. Generating Individualized Help 

Assuming early identification of students at risk for failing the course, and more 
particularly, at risk for failing to master proof construction, the question becomes how  
 
 

 
Figure 3. MDP restricted to frequent backwards actions, with at least 17 students taking each action. 



to effectively address their needs.  One alternative is to provide real-time, 
individualized hints to support on-going student proof construction efforts. 

As we have proposed in [4], we plan to generate an MDP for each problem in DT 
and use it to generate hints for new students solving proofs in DT.  Since DT has been 
used as a computer-aided instructional tool for a number of years, we have many 
semesters of data from which to create large MDPs for each DT problem. We plan to 
first use these MDPs to add intelligent hints to every problem.  As a new student works 
a DT problem, we will match their states to those in the MDP.  If their state is present 
in the problem’s MDP, we will enable a Hint Button to give contextual help. 

In [4], we have proposed several reward functions that could be used in hint 
generation.  The three types of reward functions we have proposed are: 1) expert, 2) 
typical, and 3) least error-prone.  The reward function we have described herein 
reflects an expert reward function, where the value for a state reflects the shortest path 
to the goal state.  On the other hand, a “typical” reward function will choose a path 
through the MDP that reflects frequent student responses, giving high rewards to 
correct responses given by many students.  The “least error-prone” function would 
assign high rewards to paths with low probabilities of errors.  We plan to implement 
MDPs with each of these three rewards calculated for each state. 

Given the current state, when the Hint Button is pressed, we will select a reward 
function for the current student based on their student profile. If we have identified the 
student as an at-risk student as described in section 3, we may select the “least error-
prone” reward function for generating hints.  On the other hand, high-performing 
students would likely benefit from expert hints, while students between these two 
extremes may benefit from hints reflecting typical student behavior [4].   

After we’ve selected a reward function, we select the next state with the highest 
reward value.  We propose three levels of hints from this state: 

1. Tell the student what rule to apply next (rule hint).  
2. Indicate the premises where the rule can be used (pointing hint). 
3. Tell the student both the rule and the premises to combine, resulting in a 

“bottom-out” hint (e.g., giving the answer) [2]. 
We also propose to add a limit on the number of hints a student can use and still 
receive credit for working the problem.  We believe that three hints is a fair amount, to 
be used on a single state in sequence as above or on separate states in the same 
problem.  This results in giving the student one full step of the proof, or allowing rule 
hints up to three times. 

If a student’s state is not found in the MDP, the Hint Button will be disabled. Such 
a student can get DT’s built-in feedback that indicates the correctness of each step, but 
will not get strategic help.  However, we can add the student’s action and its 
correctness to our database, and periodically run reinforcement learning to update the 
reward function values.  Before an update is applied in DT, we will test the update to 
be sure that the instructors agree with the generated hints. 

Once we have tested the feasibility of MDP-generated hints, we may group 
students according to their DT behavior and class performance, and run MDPs for each 
group of students. Then when the student asked for hints, the MDP chosen for that 
student will be tailored to both the current context (problem state), and characteristics 
of the student.  For example, we foresee grouping students as those preferring to use 
backwards-only actions, forward-only, and mixed approaches, and those at-risk or not.  
Then, the suggested hints will be more likely to be usable by each student. 



5. Conclusions and Directions for Future Research 

We have proposed a two-pronged approach to using data to improve deductive logic 
education: 1) using prior course data to find early indicators of poor performance, and 
2) deriving a way to leverage past student work in generating individualized help in 
writing proofs.  In the first approach, we have determined that one applet (JT) is 
particularly important for student success in our Deductive Logic Course.  
Individualized feedback, reminding students to complete JT with at least 70% success, 
is one way to improve overall course performance.  In the second approach, we have 
explored visualizations of student solutions to a logic proof in DT to determine other 
places for individualized help.  We have concluded that even in a simple proof 
problem, there is a need for individualized help. 

We have proposed an approach to generating these hints using both student 
characteristics and prior data.  DT can already provide feedback on many errors 
students make. Adding MDPs to this tutor will enable it to provide individualized 
hints.  These MDPs can constantly learn from new student data. We note that on cold 
start for a new problem that has no student data, the system will still act as a problem-
solving environment, but after even one semester of data is collected, a limited amount 
of hints can be generated. As more data are added, more automated assistance can be 
generated. Once implemented, we will test the hints generated based on MDPs.  We 
will investigate the effectiveness of 1) hints tailored according to a student’s JT 
performance and general proof approaches, and 2) hints derived from expert, typical, 
and least error-prone MDPs.  These resources promise to serve as a solid foundation 
for building our intelligent tutoring system. 
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