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Abstract. We have proposed a novel application of Markov decision 
processes (MDPs), a reinforcement learning technique, to automatically 
generate hints using historical student data. Using this technique, we have 
modified a an existing, non-adaptive logic proof tutor called Deep Thought 
with a Hint Factory that provides hints on the next step a student might take.  
This paper presents the results of our pilot study using Deep Thought with 
the Hint Factory, which demonstrate that hints generated from historical 
data can support students in writing logic proofs.  

1 Introduction 

Many students use computer aided instruction (CAI) to enhance their classroom 
learning, but most CAI lacks the ability to adapt to each individual student beyond 
simple answer checking. Intelligent tutoring systems can provide adaptive instruction 
and have been shown to be effective, but are not universally seen in CAI because they 
are difficult to create [14]. Our research is an attempt to make intelligent tutors more 
accessible by simplifying their creation using educational data mining and machine 
learning techniques. In particular, we seek a path for educators to add intelligent 
tutoring capabilities to existing CAI without significantly rewriting the existing 
software. The Hint Factory is a novel technique that uses a Markov decision process, 
created from past student data, to generate specific contextualized hints for students 
using CAI. In this paper, we describe the process of adding the Hint Factory to a 
software program used to teach deductive logic in an undergraduate Philosophy 
course, and we report the initial results of a pilot study to test the hint generation 
capabilities in a real class setting. 

2 Related Work 

The problem of offering individualized help and feedback is not unique to logic 
proofs. Through individual adaptation, intelligent tutoring systems (ITS) can have 
significant effects on learning, but take considerable time to construct [14]. 
Constraint-based tutors, which look for violations of problem constraints, require less 
time to construct and work well for less procedural problems [13].  However, 
constraint-based tutors can only provide condition violation feedback, not goal-
oriented feedback that has been shown to be more effective [11]. Example-based 
authoring tools such as CTAT use demonstrated examples to learn ITS production 
rules [9]. In these tools, teachers work problems in what they predict to be frequent 
correct and incorrect approaches, and then annotate the learned rules with appropriate 
hints and feedback.  This system has also been used with data to build initial models 
for an ITS, in an approach called Bootstrapping Novice Data (BND) [10]. However, 



 

 

in both of these approaches, considerable time must still be spent in identifying 
student approaches and creating appropriate hints.   

Machine learning has also been used to improve tutoring systems.  In the ADVISOR 
tutor, machine learning was used to build student models that could predict the time 
students took to solve arithmetic problems, and to adapt instruction to minimize this 
time while meeting teacher-set instructional goals [5].  In the Logic-ITA tutor, student 
data was mined to create hints that warned students when they were likely to make 
mistakes using their current approach [12].  Another logic tutor called the Carnegie 
Proof Lab uses an automated proof generator to provide contextual hints [16].  

Similar to the goal of BND, we seek to use student data to directly create student 
models for an ITS. However, instead of feeding student behavior data into CTAT to 
build a production rule system, our method generates Markov Decision Processes that 
represent all student approaches to a particular problem, and use these MDPs directly 
to generate hints.  In [3], we used visualization tools to explore how to generate hints 
based on MDPs extracted from student data. In [8], we applied the technique to 
visualize student proof approaches to allow teachers to identify problem areas for 
students. In [4] we performed a feasibility study for hint generation using historical 
student data, and found that we could have made hints available for 71% of past 
student steps using one semester of past data. Our results indicated valuable tradeoffs 
between hint specificity and the amount of data used to create an MDP. 

Our method of automatic hint generation using previous student data reduces the 
expert knowledge needed to generate intelligent, context-dependent hints and 
feedback.  The system is capable of continued refinement as new data is provided. In 
this work, we discuss how we added the Hint Factory to Deep Thought and the results 
of our initial pilot study of the system.  Although our approach is currently only 
appropriate for generating hints for specific problems with existing prior data, we 
believe that machine learning applied to MDPs may be used to create automated rules 
and hints for new problems in the same domain.  

3   The Hint Factory 

The Hint Factory consists of the MDP generator and the hint provider. The MDP 
generator is an offline process, but the hint provider must be integrated with the CAI. 
In this experiment we modified the deductive logic Deep Thought tutor to provide 
hints while students work problems.  The modifications needed were minimal, 
including tracking the student actions, passing them to the hint provider, and adding a 
hint button.  Some work must be done to word the hints, but need only be done once.   

3.1 The MDP Generator 

The MDP Generator uses historical student data to generate a Markov Decision 
Process (MDP) that represents a student model, containing all previously seen 
problem states and student actions.  Each action is annotated with a transition 
probability P and each state is assigned a value based on the MDP reward function R. 
On executing action a in state s the probability of transitioning to state s’ is P(s’ | s, a) 
and the expected reward associated with that transition is R(s’| s, a).  Our method 



 

 

takes the current premises and the conclusion as the state, and the student’s input as 
the action.  Therefore, each proof attempt can be seen as a graph with a sequence of 
states (each describing the solution up to the current point), connected by actions. 
Specifically, a state is represented by the list of premises generated in the student 
attempt, and actions are the axioms (rules) used at each step. 

We combine all student solution graphs into a single graph, by taking the union of all 
states and actions, and mapping identical states to one another.  Once this graph is 
constructed, it represents all of the paths students have taken in working a proof.  At 
this step reinforcement learning is used to find an optimal solution to the MDP.  For 
the experiments in this work, we set a large reward for the goal state (100) and 
penalties for incorrect states (10) and a cost for taking each action (1). Setting a non-
zero cost on actions causes the MDP to penalize longer solutions. We apply the value 
iteration reinforcement learning technique using a Bellman backup to assign reward 
values to all states in the MDP [16].  Equation 1 shows V(s) for each state s, where 
R(s) is the reward for the state, γ is the discount factor (set to 1), and Pa(s,s’) is the 
probability that action a will take state s to state s’ can be seen in equation 1. 

V(s) :=  R(s) +  γ max
a

 Pa (s,s') V(s')
s'

�   (1) 

For value iteration, V is calculated for each state until there is little change in the 
function over the entire state space. The reward values for each state then indicate 
how close to the goal a state is, while probabilities of each transition reveal the 
frequency of taking a certain action in a certain state. Using the MDP, we create a hint 
file for each problem in the tutor. The hint file consists of all problem states generated 
in the MDP with available hints. This includes all states that are not errors and have a 
subsequent path to the problem solution.  

3.2 Deep Thought 

Deep Thought is a custom CAI tool that allows students to practice solving logic 
proofs [6][7]. As shown in Figure 1, Deep Thought’s graphical interface allows the 
students to visually connect premises and apply logic rules. Our new hint button 
appears, as shown at the lower right in Figure 1, when a student loads a problem with 
hints. The button is bright yellow to make it more visible. When a new problem with 
hints is selected, the hint provider loads the entire hint file into memory.  

 

Figure 1: The Deep Thought Interface, with problem 3.6 partially completed 



 

 

3.3 The Hint Provider 

When the hint button is pressed, the hint provider searches for the current state in the 
MDP and checks that a successor state exists. If it does, the successor state with the 
highest value is used to generate a hint sequence.  When attaching the hint provider to 
an existing CAI, we work with instructors to determine the wording and order of 
hints.  However, these variables are easily changed, and experiments can verify the 
appropriateness and effectiveness of the chosen hints. 

We worked jointly with logic instructors to construct an appropriate sequence of hints 
to generate from successor states.  Our choices were based on one-on-one tutoring 
strategies, research on hint strategies, and consistency with existing tutors.  In one-on-
one tutoring, both instructors prefer hints that help students set intermediate goals, as 
has been shown to be effective in [11].  Existing tutors use several additional types of 
hints, including pointing hints and bottom-out hints.  Pointing hints help focus user 
attention, while bottom-out hints essentially tell students the answer [17]. 

In this experiment, a hint sequence refers to hints that are all derived based on the 
same current state. A hint sequence consists of four types of hints: 1) indicate a goal 
expression to derive, 2) indicate the rule to apply next, 3) indicate the premises where 
the rule can be used, and 4) a bottom-out hint combining 1-3. For the problem state 
seen in Figure 1, the hint sequence seen in Table 1 would be generated. For each state, 
four distinct hints are generated.  If a student requests a hint, then makes an error, and 
requests a hint again, the next hint generated is the next one in the current sequence.  
Once a student performs a correct step, the hint sequence is reset. 

Whenever the hint button is pressed the hint provider records the time, the hint 
sequence number and text, and the total number of hints requested so far in the 
problem.  In our future work we plan to also record the current state and successor 
state, and the time elapsed in the problem since the last step.  These items will enable 
us to further explore and understand hint usage.  

Table 1: Example hint sequence derived from example student solution 

4   Pilot Study 

The main goal of this experiment was to test the capability of the Hint Factory to 
generate hints for actual students.  Our secondary goal was exploratory, to determine 
how students used the provided hints, to inform our future work. Once the Hint 
Factory was added to Deep Thought, we generated MDPs and hint files for several 
Deep Thought problems. Since the current semester was already underway, we chose 
four level 3 problems from Deep Thought, 3.2, 3.5, 3.6, and 3.8. In case of 
unexpected errors, we enabled the instructor to quickly disable hints in Deep Thought. 

Hint # Hint Text 
1 Try to derive not N working forward  
2 Highlight if not T then not N and not T to derive it 
3  Click on the rule Modus Ponens (MP)  
4 Highlight if not T then not N and not T and click on Modus Ponens (MP) to get not N 



 

 

Fortunately, the software worked well and this was not necessary. Table 2 shows the 
problems used and the minimum number of rules needed to solve them. 

MDPs were generated using data extracted from Deep Thought solutions from two 
2007 Deductive Logic courses taught in the philosophy department: spring (30 
students) and summer (20 students). The data were cleaned by removing all 
incomplete proofs and log files with missing data.  Table 3 shows the number of 
student attempts used to create the MDPs for each problem, the average length of the 
attempt with minimum and maximum lengths. Based on these and the expert data in 
Table 2, the problems can be listed in order of difficulty from 3.6, 3.8, 3.2, 3.5. 

Forty students in the spring 2008 course were assigned to work these four problems 
(as many times as desired). We hypothesized that, with hints, a higher percentage of 
students would complete the given proofs.  This can be measured in two ways: by 
class and by attempts. Class participation and completion rates for the experimental 
class were much higher than the source class. For 2008, the attempt and completion 
rates were 88 and 83%, respectively, out of 40 students.  For 2007, these rates were at 
most 48%, out of 50 students. This may be due to a novelty effect, since the 2008 
class was asked to test hints. 

Table 2: Deep Thought problems where hints were added (> is implies) 

Prob. Problem Description 
Expert 
length Rules used; features 

3.6 -(T&L), -T>-N, -(EvT)/-N 3 steps DEM,SIMP, MT 

3.8 Y=P, -Y>-C, -P=-C /Y>C 6 steps EQUIV(2), SIMP(2), TRANS, HS 

3.2 (A>-B)vC, -C, DvB/-D>-A 6 steps DS, TRANS, DN, DN, IMPL, HS 

3.5 K>M, Z>R, -(K>R)/M&-Z 8 steps IMPL, DEM, DN, SIMP, SIMP, MP, MT, CONJ 

 

Table 3: Spring and summer 2007 data used to create MDPs. Attempts include only completed proofs. 
Length includes correct and incorrect steps. 

Problem 3.6 3.8 3.2 3.5 
# Complete Proofs 26 25 16 22 
Average Length 8.0 11.9 11.3 18.8 
Std Dev Length 5.9 3.1 4.0 12.4 
Avg. Correct Steps 5.5 11.2 9.0 16.7 
Average Errors 1.1 1.1 0.9 3.1 
Time 3:23 6:14 4:25 9:58 

 

Figure 1 shows the percent of solution attempts that are complete for the source 
(2007) and hints (2008) groups.  For all problems but 3.5, there was a slightly higher 
percent complete with hints available. Problem 3.5 showed much higher completion 
rates for the hints group. Figure 2 shows a comparison in behavior during complete 
and partial solutions.  Partial problems were longer by both time and the number of 
actions.  Complete solutions have fewer errors and deletions and more hint usage. 
These results suggest that some scaffolding may help identify unhelpful behaviors and 
be used to train students to more effectively learn and use help as in [1]. 



 

 

Figure 3 shows the number of hints for each problem, broken down by color into the 
distribution of hint sequence length.  We hypothesized that, as learning occurs, the 
usage of shorter hint sequences should increase.  We do not have reliable data on the 
sequence of problems that students performed, so we have ordered problems by 
difficulty.  We see here that students did use more hints as we move from less to more 
difficult problems, and the number and proportion of hint sequences of length 1 seems 
to go up from 3.6 to 3.8 and from 3.2 to 3.5.  In our future work we plan to conduct 
studies to investigate the particular effects of using hints in a situation and the time 
taken to solve a similar problem later. 
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Figure 2: Percent attempt completion between the source 
and hints groups  
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Figure 3: Comparison of behavior 
between complete and partial solutions 

Another way to measure the effectiveness of hints is to examine behavior just after 
receipt of a hint.  We therefore investigated the number of errors, correct or good 
steps, and hint requests immediately following a hint, as shown in Figure 4.  The 
proportion of good steps just after a hint goes consistently up, while there is a jump in 
the number hints and errors requested between problems 3.8 and 3.2. When we 
examine the difference between 3.2 and 3.5, we see more good steps, and slightly 
more hints and fewer errors just after a hint. Along with its higher completion rate, 
this suggests that the hints may be more effective for 3.5. 

 Figure 4: Distribution of hint sequences by 
sequence length.  

 Figure 5: Number of steps after a hint that are 
correct (good) steps, hints, or errors.  

Table 4 shows the hint usage and availability for all 2008 completed and partial 
attempts. “Moves” is the total number of non-error student actions in the interface.  In 
our prior feasibility study, we built a model to predict the probability that we could 
provide a hint based on the size of the MDP.  In that study, we predicted that proof 
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MDPs built using 16-26 attempts on problem 3.5 have a probability of providing hints 
56-62% of the time [4].  In our current experiment, if a student had pressed the hint 
button after every move taken, a hint would have been available about 48% of the 
time.  This is lower than our prediction. However, the existence of the hint button may 
have changed student behavior. 

We were encouraged by the comparison of this rate with the hint availability when 
students requested hints. In Table 4, Hint1 Requests counts the number of times a first 
hint was requested (since hints beyond the first in a sequence are all available if the 
first one is).  Hint1 Delivered shows the number of times a first hint was provided.  
“% Hint1s Delivered” shows that, over 91% of the times a hint was requested, a hint 
was available. This percentage quite exceeded our expectations. This suggests that 
hints are needed precisely where we have data in our MDPs from previous semesters.  
We plan to investigate the reasons for this surprising result with further data analysis 
on this dataset and with future experiments.  It is possible that there are a few key 
places where many students need help. Another explanation is that, when students are 
performing actions that have not been taken in the past, they may have high 
confidence in these steps and need no help.  

Table 4: Hint usage and availability by problem, including all solution attempts in Spring 2008 

Problem 3.2 3.5 3.6 3.8 Total 
Attempts 69 57 44 46 216 
Moves 999 885 449 552 2885 
Moves w/ Avail. Hints 442 405 230 269 1346 
% Moves w/ Avail. Hints 44.2% 45.8% 51.2% 48.7% 47.9% 
Hint1 Requests 236' 232' 70' 154' 692 
Hint1 Delivered 213' 212' 66' 142' 633 
% Hint1s Delivered 90.3%� 91.4%� 94.3%� 92.2%� 91.5% 

5   Conclusions and Future Work 

Our approach to creating intelligent support for learning differs from prior work in 
authoring tutoring systems by mining actual student data, rather than relying on 
teachers to add examples the system can learn from. Our tutor can already classify 
many errors students make. Adding the MDP to this tutor enables it to provide hints.  
This MDP can constantly learn from new student data. We note that on cold start for a 
new problem that has no student data, the system will still act as a problem-solving 
environment, but after even one semester of data is collected, a significant amount of 
feedback can be generated. As more data are added, more automated feedback can be 
generated. This research represents the implementation and a pilot study for our hint 
generation method in an actual classroom setting. We achieved our main goals, which 
were to verify that the software would work in a class setting, students would request 
hints, and hints would be available when requested. 

More work is needed to understand the impact of our hint generator on student 
learning and satisfaction.  This semester, we plan to survey the students who used the 
hints to measure student opinions, perceptions, and usage patterns.  In future 
semesters we plan to conduct talk-alouds to determine how well the hints align with 
what students need to know in solving proofs, and how well the hints support students 
in setting sub-goals. These studies will also help us determine why some students 



 

 

seemed to avoid hints while others abused them, as in [2]. We will also add hints to 
more problems and conduct additional studies and analyses to better understand the 
overall effects of giving students automatically generated hints. In our future work, 
we will continue to explore ways to learn general rules to build intelligent feedback 
and help with greater coverage and robustness. For instance, we plan to group 
students according to their proofs behavior and class performance, and create tailored 
MDPs for each group of students. In addition, we plan to create and implement 
different value functions for the MDP generator and perform experiments to see if 
certain students relate better different hint types. 

In [3], we have proposed several reward functions that could be used in hint 
generation, including 1) expert, 2) typical, and 3) least error-prone. The reward 
function we have described herein reflects an expert reward function, where the value 
for a state reflects the shortest path to the goal state.  Given the current state, when the 
Hint Button is pressed, we will select a reward function for the current student based 
on their student profile. If we have identified the student as an at-risk student, we may 
select the “least error-prone” reward function for generating hints.  On the other hand, 
high-performing students would likely benefit from expert hints, while students 
between these two extremes may benefit from hints reflecting typical student behavior 
[3].  We also plan to limit the number of hints a student can use and still receive credit 
for working the problem.  We believe that four hints is a fair number, to be used on a 
single state in sequence as above or on separate states in the same problem. 
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