
Automatic Peer Tutor Matching: Data-Driven Methods to
Enable New Opportunities for Help

Nicholas Diana
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
ndiana@cmu.edu

Michael Eagle
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213

meagle@cs.cmu.edu

John Stamper
Carnegie Mellon University

5000 Forbes Avenue
Pittsburgh, PA 15213
john@stamper.org

Shuchi Grover
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

shuchi.grover@sri.com

Marie Bienkowski
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

marie.bienkowski@sri.com

Satabdi Basu
SRI International

333 Ravenswood Avenue
Menlo Park, CA 94025

satabdi.basu@sri.com

ABSTRACT
The number of students that can be helped in a given class
period is limited by the time constraints of the class and
the number of agents available for providing help. We use
a classroom-replay of previously collected data to evaluate
a data-driven method for increasing the number of students
that can be helped. We use a machine learning model to
identify students who need help in real-time, and an inter-
action network to group students who need similar help to-
gether using approach maps. By assigning these groups of
struggling students to peer tutors (as well the instructor),
we were able to more than double the number of students
helped.

Keywords
Introductory Programming; Learning Analytics; Machine
Learning; Peer Tutors; Educational Data Mining

1. INTRODUCTION
While a typical classroom may be full of students experi-
encing the same problem and students who have solved that
problem, this expertise is rarely utilized. Instead, often the
only source of help is the instructor, who is most likely un-
able to help all the students who need help within the time
constraints of the class period. To address this problem,
we propose and evaluate several methods for improving the
efficiency of student assistance using machine learning.

Diana et al. [1] showed that low-level log data from the Al-
ice introductory programming environment can be used to
accurately predict student grades, and that they could in-
crease the number of students helped by matching struggling
students to a peer tutor based on the similarity of their code.

A subsequent study [2] found that the accuracy and inter-
pretability of the previously reported predictive model could
be improved by increasing the grain size of the features from
a vocabulary of terms derived through natural language pro-
cessing (NLP) to small snippets of code. We explore how
this improvement impacts peer tutor matching and the ef-
ficiency of providing help more generally. Additionally, we
use an interaction network graph to test if students who may
benefit from the same kind of help can be grouped together,
increasing the efficiency of the instructor or peer tutor.

2. METHODS
The data used in the current study were originally collected
by Werner et al. [3] as part of a two year project explor-
ing the impact of game design and programming on the de-
velopment of computer science skills. The students were
asked to complete an assessment task called the Fairy As-
sessment. The current experiment closely follows the data
transformation methodology reported in [1] to convert raw
log data into program representations called code-states and
the code-state complexity reduction methodology reported
in [2] to reduce code-states to smaller, code-chunks.

We used ridge regression to predict students’ grades. We
compared two methods for generating the features inputted
into the regression. In the first method, features were a vo-
cabulary of NLP terms generated from the students’ code-
states. In the second method, each code-state was first con-
verted into a list of code-chunks, and then into a chunk-
frequency vector. A chunk-frequency vector is a vector whose
length is equal to the total number of features being consid-
ered in the model. Each value in the vector corresponds to
the frequency of the respective code-chunk.

The predicted grades were also used to estimate which stu-
dents need help and which students may be able to provide
help. We call the students classified as needing help using
their actual grades low-performing students. This classifica-
tion serves as the ground-truth that we use to evaluate our
predictive model. In a real world implementation, we would
not have access to the actual grades, so we must estimate
them and use those estimates to classify students as need-

Proceedings of the 10th International Conference on Educational Data Mining 372



ing help. If a student’s predicted grade was in the bottom
quartile, and they have not been helped or are not currently
being helped (”helped”status persists across time), then that
student was added to the group of students who still need
to be helped, which we call the Help Pool. If a student’s
predicted grade was in the top quartile, and they are not
currently helping a student, then that student was added to
the group of students who may be able to help other stu-
dents, which we call the Tutor Pool. For each student in
the Help Pool, we first checked to see if the instructor was
available to help. If so, the instructor was assigned to that
student. If the instructor was unavailable (i.e., helping an-
other student), then we searched for a peer tutor. We used
a network graph of each code-state (or code-chunk frequen-
cies) for each user to match tutees to tutors. We searched
for tutors who shared a common ancestor node (i.e., shared
a previous program state) with the tutee. These tutors were
added to a pool of potential tutors. From that pool we se-
lected the tutor with the common ancestor node that was
closest (i.e., least number of steps away) to the tutee’s cur-
rent node. The same method applied if segmenting was used,
except that instead of matching the instructor or peer tutor
to one student, the instructor or tutor was matched to a
segment of students with a similar problem.

2.1 Efficiency Index
While the primary goal of our previous work [1] was to eval-
uate how well our model could correctly classify students
who would go on to have a low final grade (low-performing
students), the primary goal of the current experiment is to
evaluate how efficient this intervention would be. That is, we
were interested in what percentage of those low-performing
students could be helped, and how we can maximize that
percentage. We call this ratio the Efficiency Index (EI),
and define it formally as:

EI =
LowPerformingStudentsHelped/BeingHelped

LowPerformingStudents
(1)

The EI can be further broken down into the percentage of
low-performing students helped by the instructor (EII) and
the percentage of low-performing students helped by peer
tutors (EIPT ).

3. RESULTS
We compared models using a linear mixed model with the
measure of interest as the dependent variable, model as a
fixed effect, and time bin as a random effect.

We hypothesized that we can use low-level programming
data to group similar low-performing students together so
that they can be helped as a group. To test this, we first
replicated our previously reported model to use as a baseline
measure. Then, we generated a new model that incorporated
segmenting. Both models used NLP features in a ridge re-
gression and an interaction network graph built using code-
states as nodes. We found that the EI (M=0.467, SD=0.210)
of the model that incorporated segmenting was significantly
higher (p<.001) than the baseline model (M=0.305, SD=0.190).

We also hypothesized that using the presence or absence of
code-chunks as model features would improve the perfor-
mance of the model. To test this, we generated a model
using a sample of the code-chunks from our previous work
that were shown to be good predictors of learning outcomes
[2]. We generated a model using these 16 code-chunk fea-
tures (rather than the NLP-derived terms used in the base-
line model), and found that this code-chunk model had a
significantly lower (p<.001) RMSE (M=0.246, SD=0.064)
than the baseline model (M=0.263, SD=0.073).

Finally, we hypothesized that a network graph generated
using code-chunks as nodes would lead to greater coverage
and a higher EI. To test this, we generated a model using
the same 16 code-chunks described above as features in the
regression. A network graph was also generated to incorpo-
rate segmenting. However, instead of each node correspond-
ing to a code-state, each node corresponded to a chunk-
frequency vector. Representing nodes as chunk-frequency
vectors more than doubled the coverage (coverage=0.924)
compared to the network graph generated using code-states
(coverage=0.374). The EI of the model using chunk-frequency
vectors to generate the network graph (M=0.813, SD=0.128)
also had a significantly higher (p<.001) EI than the model
using code-states (M=0.428, SD=0.217).

4. CONCLUSIONS
In this paper, we explored a method for increasing the amount
of help given in a typical class period. Our previous work
demonstrated that we can use a predictive model to accu-
rately identify students who may need help. We built off of
this work in two ways. First, we improved the accuracy of
the predictive model by using more relevant features. Sec-
ond, we drastically increased the number of students able
to be helped from, on average, 3.72 to 9.92 by grouping
low-performing students together to be helped as a group
(in combination with better model features). These results
suggest that using low-level log data to group and match
low-performing students to peer tutors may be an effective
way to increase the amount of help given in a classroom.

5. REFERENCES
[1] N. Diana, M. Eagle, J. Stamper, S. Grover,

M. Bienkowski, and S. Basu. An instructor dashboard
for real-time analytics in interactive programming
assignments. In Proceedings of the Seventh International
Learning Analytics & Knowledge Conference, LAK ’17,
pages 272–279, New York, NY, USA, 2017. ACM.

[2] N. Diana, M. Eagle, J. Stamper, S. Grover,
M. Bienkowski, and S. Basu. Data-driven generation of
rubric parameters from an educational programming
environment. Submitted.

[3] L. Werner, J. Denner, and S. Campe. The Fairy
Performance Assessment : Measuring Computational
Thinking in Middle School. Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education - SIGCSE ’12, pages 215–220, 2012.

Proceedings of the 10th International Conference on Educational Data Mining 373


