
An Algorithm for Reducing the Complexity of Interaction
Networks

Matthew W. Johnson
University of North Carolina at

Charlotte
Charlotte, NC

mjokimoto@gmail.com

Michael Eagle
University of North Carolina at

Charlotte
Charlotte, NC

maikuusa@gmail.com

John Stamper
Carneige Mellon University

Pittsburgh, PA
john@stamper.org

Tiffany Barnes
North Carolina State

University
Raleigh, NC

tmbarnes@ncsu.edu

ABSTRACT
We present an algorithm for reducing the size and complex-
ity of the Interaction Network, a data structure used for
storing solution paths explored by students in open-ended
multi-step problem solving environments. Our method re-
duces the number of edges and nodes of an Interaction Net-
work by an average of 90% while still accounting for 40% of
actions performed by students, and preserves the most fre-
quent half of solution paths. We compare our method to two
other approaches and demonstrate why it is more effective
at reducing the size of large Interaction Networks.

1. INTRODUCTION
One major advantage of computer based tutoring systems,
for multi-step problems, is the ability to log data show-
ing ‘how’ students solved problems, and their mistakes, an
aspect not often found in traditional paper based home-
work. However providing educators a method of under-
standing the data logged by these systems, efficiently so
that it can be acted upon, remains challenging. One ap-
proach is to provide a visualization tool to display the so-
lutions to educators, to facilitate gaining insights into how
students solved their open-ended multi-step problems. We
define open-ended problems, as problems with at least two
differing solution paths requiring multiple steps to complete.
These types of problems are often seen in Intelligent Tutor-
ing Systems (ITS) and similar computer based instruction,
like the Deep Thought Logic Tutor[3].

The interaction network is a network similar to a state-space
for tutors, built from data-logs, which leverages student in-
formation. One important challenge facing the Interaction
Network and InVis, the tool built for exploring those net-

works, is the size of the network, often resulting in thousands
of nodes and edges for roughly a hundred students worth of
data. These large networks make it difficult to retrieve a gen-
eral overview and understanding of student solutions. We
present a reduction algorithm that drastically reduces the
number of nodes in the network, allowing users to focus on
the common approaches used by students to solve problems.

We compare the reduction of nodes and edges between our
reduced network and the original, as well as other metrics,
like the percent coverage of student solutions. We also com-
pare our approach to two alternative filtering processes to
show the benefits of our method. We provide a set of domain
experts with one of the problems from the Deep Thought
logic tutor and ask they describe the different approaches
students use to solve the problem, as well as the common
mistakes. We compare the expert provided solutions to the
reduced Interaction Network to confirm whether or not our
method has appropriately captured the solution paths.

We show that our proposed reduction algorithm when ap-
plied to the Interaction Network successfully reduces the
number of nodes of the Interaction Network by between 86
and 96 percent, while preserving the solution traces to an
average of 52 percent of the goals and 40 percent of the
student action frequencies. Furthermore, our method pre-
serves all the solutions suggested by experts. These types
of reduced networks could aid in providing a more efficient
means of understanding student behaviors, mainly by lim-
iting the network to the most important solutions. When
combined with InVis, this could provide an efficient method
of understanding how students solved problems in computer
based systems, potentially providing a useful role for the ed-
ucator in their course, by providing a better understanding
of student solutions.

2. RELATED WORK
Others have looked at reducing the state space in learning
environments for purposes of improving intelligent tutor ef-
ficiency and improving interpretation of the data for use by
course developers and instructors [9]. Our work differs, as
we focus on clustering different student solutions to complex



problems in order to reduce the space of student strategies.

The source for our student data is the Deep Thought logic
tutor. This tutor allows students to solve first-order prepo-
sitional logic problems[3]. Students are provided a set of
premises and are challenged with deriving a conclusion. By
applying a set of different logic axioms, students can either
work from the premises towards the conclusion or alterna-
tively, Deep Thought allows students to work backwards,
from the conclusion towards the premises. The Interaction
Network can be applied to an individual problem.

Sudol et al. describe a method of generating a similar state
space that we use here, but for the domain of programming.
In their work, they present the probability distance metric
for states in programming problems for introductory stu-
dents [10]. Menzel and Le have also focused on exploring
the state-space of ’ill-defined’ domains, using a constraint
based system[7]. Mitrovic explores open-ended problems in
their web-based SQL tutor which is a constraint based sys-
tem, but their system has also incorporated a student model
to aid users [8].

From our experience with earlier versions of the InVis tool,
large networks made it difficult for educators and researchers
to efficiently decipher the types of solutions students are us-
ing to solve problems from the Deep Thought logic tutor.
In our previous work, users explored networks for nearly 20
students at a time. However, our goals for the InVis tool
are to make understanding student solutions efficient, which
can be achieved by viewing more students at a time. An
advantage to looking at more students at once is, it can be
easier for users to compare different solutions, as they will
not have to maintain those different solutions in their work-
ing memory but can quickly make comparisons based on the
visualization. Finally, the visualization research community
provides us with the Visual Analytics mantra, which argues
when there is too much data, visualizations should lever-
age the machine to analyze the data, identify and present
the important features of the data, rather than providing an
overview of all the data and relying on the user to filter[2].

An Interaction Network is a model of the state space which
includes student information on edges and nodes. It is a con-
nected, directed, labeled multi-graph with states as vertices,
actions as directed-edges to connect the states. The Inter-
action Network stores the set of all students who visited any
particular state-vertex or action-edge, allowing us to count
frequencies and connect other information, like test scores
or hint usage values, to the Interaction Network represen-
tation. A detailed description of the Interaction Network is
provided in previous work[5].

3. REDUCTION ALGORITHM
Data sets containing many student solution attempts can
create large state spaces. One of the goals of InVis is to pro-
vide an efficient understanding of common student behav-
iors. However, exploring networks with thousands of nodes
can be slow, and is also subject to hardware limitations.
In our experience, even professional software tools for view-
ing graphs start to slow down when the node counts exceed
1500, on typical PC hardware. We developed an algorithm
for reducing the network by roughly 90%, while preserving

Figure 1: This is the reduced network for problem
3-5. This reduced network contains 186 nodes (85%
reduction) and 219 edges (88% reduction).

important information.

The purpose of this algorithm is to maximize the amount
of information we can gain from the data, while minimizing
the number of nodes and edges, to make common approaches
more clear. We also want to be as close as possible to a di-
rected simple graph. A simple directed graph is defined as
a graph containing no loops or parallel edges. Our assump-
tion is that simple graphs are easier to read when following
state-transitions, because they have no parallel edges. Next
we want to preserve as many paths from the problem start
to the goals as possible, to retain as many student solu-
tions as we can. We would also like to provide continuity
and solution variations. Continuity in this case, implies the
reduced network maintain complete solution paths, so the
graph is understandable, as opposed to a list of the most fre-
quent nodes. By providing variations to similar solutions we
should be able to provide better estimations to the numbers
of students who performed a particular solution. Without
the context of the progression of the states, users would be
unable to understand how the problems were solved. We
want to provide a means for understanding how many stu-
dents solved the problem, not just which actions were most
frequent.

We will use four metrics for measuring our success.

1. Vertex and Edge Reduction Rates
2. Number of Goals
3. Number of Interactions
4. Average Student Frequency per Edge

The vertex and edge counts will inform us how well we re-
duced the number of states and actions, we aim for reduc-
tion in magnitude. Goal counts will let us know how many
of the solution paths we have maintained, from start to fin-
ish. For this metric, not only the count is important, but
to maintain continuity all goals must have a path from the
start of the problem to the respective goal state. The sum
of edge frequencies will inform us of the total number of



Figure 2: This is the problem 3-5 data set after the
shortest paths reduction applied. This network con-
tains 383 nodes(69% reduction), and 382 edges (79%
reduction). Note, the two longest solution paths
have been cropped in this image.

actions performed by all students, and in turn what per-
cent of student actions are being preserved in our reduction.
Arguably, edges with higher frequencies are more informa-
tive because more students performed that action, over an
action performed by a fewer students. Lastly, the average
student frequency per edge will give us an indicator of how
important each edge is in the network.

We asked two professors with over a decade of experience
teaching logic, and two graduate students who have either
taught the course or performed a teaching assistant role to
provide us with the set of solutions they expected to see
from students. These four experts provided us with eight
solutions total, four of which differed in direction or actions
used to solve the problem. Problem 3-5 was chosen because
it has one of the larger ranges of possible solutions in our
problem set. We will use these provided solutions in com-
parison to the reduced network and compare how many of
those solutions are preserved in the reduced network.

3.1 Algorithm
The idea for this algorithm is inspired by compression algo-
rithms. We want to identify the edges with the highest fre-
quencies and preserve them, then find goal states which are
close to those paths. The Interaction Network for the prob-
lem 3-5 data set has 1252 nodes and 1835 edges. The pro-
posed algorithm works by focusing on high frequency edges,
of which there are few, and filtering out the low, and often
frequency one edges, for which there are hundreds. This
algorithm works by accepting three parameters, the Inter-
action Network on which to act upon, the percent of desired
reduction, and a growth parameter. Prior to reduction, we
first calculate a set of values in a pre-reduction step. In tu-
tors which do not contain ‘undo’ actions, this step will not be
necessary. To adjust for the behavior of moving forward, fol-
lowed by an undo, we calculate a table of negative weights.
For each state, an incoming action followed by an ‘undo’,
will increment a negative weight counter for the incoming
action. This will be used to devalue the frequency of these
actions. Next we remove the ‘undo’ edges from the network,
this reduces the number of cycles and parallel edges presum-
ably making the flow of state-transitions in the Interaction
Network easier to follow.

Figure 3: This is the problem 3-5 data set after the
frequency one filter reduction is applied. This fil-
tered network contains 235 nodes(81% reduction),
and 400 edges(78% reduction).

Next we calculate the adjusted edge frequencies, which are
equal to an edge’s original frequency minus the weight calcu-
lated in the previous step. Now, the network is reduced using
the percent reduction parameter. We aimed for an order of
magnitude reduction and so this parameter was set to 10%.
For the reduction step, we generate a new network using
the edges with the top 10% of student frequencies, and their
source and target nodes. Depending on the network a set
of disjoint graphs will be created, we find the roots of each
disjoint graph, which are the nodes with zero in-degree. We
then calculate the shortest paths from the problem start to
each disjoint-root, and inject the necessary edges and nodes
to reconstruct a connected graph. Following this step we
check the list of all goal nodes and attempt to connect any
node in the reduced graph to any of the goal nodes, again
using the shortest path in the original network. We use the
growth parameter to limit the distance of the shortest path,
for this work we used a value of ten. That is, if a goal node
can be reached within ten edges, the path is added, other-
wise it is ignored. As a final step, we attempt to connect
all the nodes within the reduced graph to any other node in
the reduced graph, again using shortest path. The reduced
network for problem 3-5 is provided in figure 1.

4. RESULTS
For each problem we generate the Interaction Network, the
reduced Interaction Network using our algorithm described
here, as well as two other reductions described below. Next
we average the values across all 11 problems and compare.
We discuss the results presented in table 1 and the compar-
isons with the other methods of reduction. Experts provided
eight total solutions independently, four of which differed in
either the actions or direction in which the problem was
solved. Our reduced graph contained three out of the four
solutions provided by experts. The fourth solution, a for-
ward disjunctive syllogism and Modus Tollens approach was
not present in our reduced network or the original full-data
network. A working backward version of this solution is in
the reduced graph which was solved by a single student.

4.1 Comparison
We compare against two alternative methods of filtering or
reduction to help confirm the quality of our chosen approach.
Those methods were a shortest path approach and a fre-
quency 1 removal approach, which are somewhat naive but
provide for good comparison. The shortest path method
of reduction, takes in the start state of the problem and a



Table 1: The average metric scores across 11 problems and 2239 problem sessions. Original refers to the full
network values. Each column is a method and its score, with percentile comparison to the Original network
in parenthesis. For vertices and edges the percent is the amount of reduction, for goals and interactions it is
the amount of coverage or inclusion.

Shortest Greater than
Original Reduced Paths Frequency One

Vertices 1172 114 (90.26%) 238 (77.85%) 203 (81.73%)
Edges 1690 132 (92.23%) 237 (84.75%) 348 (78.33%)
Goals 38 20 (52.54%) 38 (100.00%) 12 (33.04%)
Interactions 3332 1283 (39.90 %) 1162 (36.89) 1990 (60.77%)
Avg. Edge Freq. 2.10 12.34 6.60 6.03

set of goal nodes for the problem. Next, Dijkstra’s short-
est path algorithm[4] is run and the result is the union of
the shortest paths to each goal. The Frequency one filter
approach, simply removes all edges from the network with
student frequency one.

Referring to table 1 we can see some advantages and disad-
vantages of each approach. First, as expected, the shortest
path approach naturally has 100% goal coverage, that is
we can see a path to every goal from the original Interac-
tion Network. The disadvantages of this approach is that
the paths chosen do not optimize the frequencies of edges,
because the shortest path can contain many frequency one
edges. Next the overall reduction rates are half as effective
as our method, leaving on average twice as many nodes and
edges. This method preserves fewer actions performed by
students while having lower rates of reduction. The result-
ing shortest paths network for problem 3-5 is shown in figure
2. Note, if the growth parameter is set to infinity, the path
to all goals will be preserved - same as the shortest path
method, though naturally reduction rates will be affected.
Thus, our method can facilitate 100% goal coverage.

Alternatively, the frequency one filter, maintains a higher
rate of interactions, as we would expect since fewer edges
are removed. However, frequency one filtering suffers from
low rates of reduction, having double the number of nodes
and triple the number of edges on average, while also having
lower rates of goal coverage, 33% compared to our method
which achieved 52%. This method has lower reduction rates
and lower goal coverage. Figure 3 shows the resulting net-
work for problem 3-5 using the frequency one filtering pro-
cess. By comparing the average edge frequencies in table 1
we can see our method has double the value than either of
the other two approaches. This score is meaningful because
it is the average number of actions performed by students,
per edge within the network.

5. CONCLUSIONS
We provide an algorithm for reducing the complete Inter-
action Network to a summary of the most common prob-
lem solving approaches used by students. We showed that
this algorithm was capable of reducing the number of ver-
tices and edges of the Interaction Network by an average
of around 90%, while still depicting more than half the of
the solution paths and accounting for 40% of interactions
performed by students.

6. REFERENCES

[1] G. Cobo, D. Garćıa-Solórzano, J. A. Morán,
E. Santamaŕıa, C. Monzo, and J. Melenchón. Using
agglomerative hierarchical clustering to model learner
participation profiles in online discussion forums. In
Proceedings of the 2nd International Conference on
Learning Analytics and Knowledge, LAK ’12, pages
248–251, New York, NY, USA, 2012. ACM.

[2] B. Craft and P. Cairns. Beyond guidelines: What can
we learn from the visual information seeking mantra?
In Proceedings of the Ninth International Conference
on Information Visualisation, pages 110–118,
Washington, DC, USA, 2005. IEEE Computer Society.

[3] M. J. Croy. Graphic interface design and deductive
proof construction. J. Comput. Math. Sci. Teach.,
18:371–385, December 1999.

[4] E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1:269–271,
1959.

[5] M. Eagle, M. Johnson, and T. Barnes. Interaction
networks: Generating high level hints based on
network community clusterings. In EDM, pages
164–167, 2012.

[6] D. Feng, J. Kim, E. Shaw, and E. Hovy. Towards
modeling threaded discussions using induced ontology
knowledge. In Proceedings of National Conference on
Artificial Intelligence (AAAI-2006), 2006.

[7] N.-T. Le and W. Menzel. Using constraint-based
modelling to describe the solution space of ill-defined
problems in logic programming. In Proceedings of the
6th international conference on Advances in web based
learning, pages 367–379, Berlin, Heidelberg, 2008.

[8] A. Mitrovic. An intelligent sql tutor on the web. Int.
J. Artif. Intell. Ed., 13(2-4):173–197, Apr. 2003.

[9] S. Ritter, T. K. Harris, T. Nixon, D. Dickison, R. C.
Murray, and B. Towle. Reducing the knowledge
tracing space. In EDM, pages 151–160, 2009.

[10] L. A. Sudol, K. Rivers, and T. K. Harris. Calculating
probabilistic distance to solution in a complex
problem solving domain. In K. Yacef, O. R. ZaÃŕane,
A. Hershkovitz, M. Yudelson, and J. C. Stamper,
editors, EDM, pages 144–147.
www.educationaldatamining.org, 2012.

[11] D. D. Suthers, H. U. Hoppe, M. de Laat, and S. B.
Shum. Connecting levels and methods of analysis in
networked learning communities. In Proceedings of the
2nd International Conference on Learning Analytics
and Knowledge, LAK ’12, pages 11–13, New York,
NY, USA, 2012. ACM.


