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ABSTRACT 
Variations of cognitive models drive many instructional decisions 
that intelligent tutoring systems currently make. A better 
knowledge component model will yield better instruction, but 
how do we identify better cognitive models? One answer has been 
to create a latent variable version of a cognitive model or a so-
called knowledge component (KC) model, then compare different 
models by how well they predict student performance data. In this 
research we analyze 1,943 proposed KC models that exist in 
DataShop (http://pslcdatashop.org) and compare and contrast the 
different metrics used to measure the quality of predictive fit to 
the data.  All these metrics are designed to avoid over-fitting to 
the data, including AIC, BIC, and cross validation. We find that 
AIC is the metric most consistent with all the others and 
corresponds better with cross validation results than BIC. 
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1. INTRODUCTION 
An important area of Educational Data Mining (EDM) is the 
building and improvement of models of student knowledge. 
Creating good models are important in the design of adaptive 
feedback, assessment of student knowledge, and predicting 
student outcomes [9]. A correct model of student knowledge is 
consistent with student behavior, such that, it predicts task 
difficulty and transfer between prior opportunities to practice and 
learn (via positive or negative feedback and next-step hints) and 
future opportunities to demonstrate learning (by correct 
performance). These models are evaluated by how well they 
predict the student performance on actual student data. To prevent 
selecting models that overfit the data (and would thus not work 
well in new contexts), prediction fit is measured using a number 
of techniques including cross validation, the Akaike information 
criterion (AIC), and the Bayesian information criterion (BIC). 
Cross validation is the gold standard for evaluating prediction fit 
and avoiding over-fitting, but it can take substantial time to run 
making it undesirable for searching for new models. AIC and BIC 
are metrics that can be calculated quickly, which makes them 
desirable when comparing a large number of proposed models, 
but how adequate are they and which one is better at anticipating 
cross validation results? This research explores comparisons of 
AIC, BIC, and various cross validations that are available in 
DataShop. 

DataShop is the world’s largest open data repository of 
transactional educational data collected from a wide variety of 
online learning environments [10]. The data is fine-grained, with 
student actions recorded roughly every 10 seconds on average, 
and it is longitudinal, spanning semester or yearlong courses. As 
of May 2013, over 400 datasets are stored including over 100 

million student actions, which equates to over 250,000 student 
hours of data. Most student actions are “coded” meaning they are 
not only graded as correct or incorrect, but are categorized in 
terms of the hypothesized skills or knowledge components (KCs) 
needed to perform that action. DataShop stores a widespread 
selection of educational data from assorted technologies, domains 
and researchers. STEM subjects are well represented as are 
languages such as Chinese, English and French.   There are also 
accessible datasets in miscellaneous content areas like reading, 
psychology, logic and handwriting. The acquisition of student 
log-data comes from a multitude of sources including intelligent 
tutors, online-courses and internet games and simulations. The 
collection methodologies include random controlled experiments, 
longitudinal studies, and anonymous on-line game playing.  

Given the accessibility of data and diversity of applications stored 
in DataShop’s repository, we were interested in exploring the 
metrics commonly used for model selection and prediction (i.e., 
AIC, BIC and Cross-validation). In particular, we examined 
correlations and rank order correlations between the various 
metrics to determine if one metric stands apart as a better 
predictor.  Next, we examined best model selections for AIC and 
BIC and how they compared to cross validation best model 
selection. 

A KC is defined as a piece of knowledge that can be applied to 
solve a specific task. Practically, KCs can be considered 
generalizations of skills or concepts that form the basis of a 
cognitive model of student knowledge. A typical step in a 
problem that a student will solve will include one or more KCs 
that describe the knowledge that the student is applying. A 
mapping of KCs to problem steps in a set of instruction forms a 
KC Model. Multiple mappings can be fit to the same set of 
student instruction based on the granularity of the KCs that make 
up each model. Figure 1 shows a screen shot from DataShop 
listing the KC Models and their evaluation metrics for a dataset 
called “Cog Model Discovery Experiment Spring 2010.” 

A KC model can be used to track individual student knowledge or 
predict student responses based on a statistical representation of 
the KC Model. In DataShop, the model used to evaluate student 
learning is called the Additive Factors Model (AFM) [3; 11]. 
AFM is an extension of item response theory that incorporates a 
growth or learning term [cf.,6]. AFM is shown in Figure 2. The 
discrete portion of the student model is represented by qjk, the so-
called “Q matrix” [13], which maps hypothesized difficulty or 
learning factors (the knowledge components or skills) to steps in 
problems. These factors are hypothesized causes for difficulty (�k) 
or for learning improvement as students practice (�k). AFM gives 
a probability that a student i will get a problem step j correct 
based on the student’s baseline proficiency (�i), the baseline 
difficulty (�k) of the required KCs (qjk), and the improvement (�k) 
in those KCs as the student gets practice opportunities (Tik). 



�

Figure 2. In the Additive Factors Model (AFM), the probability 
student i gets step j correct (pij) is proportional to the overall 
proficiency of student i (�i) plus for each factor or knowledge 
component k present for this step j (indicated by qjk), add the base 
difficulty of that factor (�k) and the product of the number of 
practice opportunities this student (i) has had to learn this factor 
(Tik) and the amount gained for each opportunity (�k). 

The AFM model can be used to evaluate and predict learning, 
which can be visualized in DataShop with the use of learning 
curves. Fig 3 shows a learning curve for a KC called “Find circle 
circumference.” The red line represents the actual student error 
rate from data collected in the dataset over each opportunity 
students have to apply the KC. The blue line represents the 
predicted model derived through AFM. DataShop allows for 
visual inspection of the KCs and their predicted fit with AFM, 
which can be used to help identify potential improvements in the 
KC model when the data and AFM curves do not match [12]. 

 

Figure 3. Learning Curve visualization from DataShop showing 
the KC “Find circle circumference”. The y-axis is the error rate 
and the x-axis is each opportunity students have to apply the KC. 
The red is actual data and blue line is the predicted value. 

When a potential improvement is found and a new model is 
proposed, it can be imported into DataShop and the system will 
automatically evaluate the new model against five metrics: AIC, 
BIC, Student Stratified Cross Validation (SSCV), Item Stratified 
Cross Validation (ISCV), and Non-Stratified Cross Validation 
(NSCV). Using these metrics the researcher can make a judgment 
as to whether the potential model leads to a better fit on the data.  

When time is not an issue, cross validation is considered by most 
to be the best way to score models, but there is no consensus on 
how the cross validation should be done for educational 
transaction data. DataShop provides three cross validation 
measures that are each 10 fold and provides a value for the root 
mean squared error (RMSE). One measure stratifies the data by 
student, another by item, and the third is not stratified. While 
cross validation is considered the best method to score models, it 
is more time consuming and computationally expensive for large 
datasets than AIC or BIC. For this reason, when comparing many 
models we use AIC or BIC to score the models.  

One active research area where many models are compared and 
evaluated against each other is the automated search for improved 
models. Using the AFM model and datasets in DataShop we have 
previously implemented an automated search algorithm, Learning 
Factors Analysis (LFA), for discovering better cognitive models 
[8]. This algorithm has been successfully applied to DataShop 
datasets and succeeded in improving existing models. Figure 1 
includes two models that were automatically generated and are 
named “LFASearch…” The LFA search algorithm uses existing 
KC Models to complete a directed search, which results in labeled 
models that are easily interpretable by researchers. 

AIC and BIC are measures for the goodness of predictive fit of a 
statistical model. They extend the log-likelihood measure of fit by 
penalizing less parsimonious models. Unlike the RMSE 
calculation from cross validation, the values of AIC and BIC have 
no meaning for an individual model, and are only useful when 
comparing alternative models built on the same dataset. Within 
DataShop, this means that models must have the same number of 
observations tagged with KCs to be comparable. DataShop also 
has a Model Values page under the Learning Curve tool that has 
more detailed information on the model metrics (AIC, BIC, and 
the cross validations), and the inputs used to calculate them (log 
likelihood, number of parameters, etc.). AIC is a metric for model 
comparison that trades off the complexity of the estimated model 
against how well the model fits the data [1]. In this way, it 
penalizes the model based on its complexity (the number of 
parameters). The equation for calculating AIC is AIC= 2k – 2 
ln(L), where k is the number of parameters and L is the 
likelihood. The equation for BIC is BIC=k ln(n) – 2 ln(L), where 
n is the number of observations, k is the number of parameters, 
and L is the likelihood. BIC is similar to AIC, but BIC penalizes 
free parameters more strongly than AIC as can be seen by the 
formulas and noting that the coefficient of the number of 
parameters (k) is much larger for BIC (ln(n) for n observations) 

 
Figure 1. Screenshot of the KC Models page in DataShop (http://pslcdatashop.org) for the dataset Cog Model Discovery Experiment 
Spring 2010. Here we can see named models with a different number of KCs in each. Note that all the models with the same number 
of observations with KCs (41,756 for example) are comparable with each other. DataShop also allows for the user to select the metric 
on which to sort the models. In this case, the models are sorted by AIC where a lower value is better. 



than for AIC (2) for any non-trivially sized data set. In general, 
this means that BIC favors models with less parameters (again 
more strongly the AIC), and converges to the “true” or correct 
model [1], however, this does not mean that for BIC to be useful 
that the “true” model must exist in the set of possible models [2]. 
Both reduce the chance of over-fitting the data by penalizing for 
increasing the number of parameters in the model. They are much 
faster to compute than cross validation and are believed to 
reasonably predict the results of cross validation, though no 
systematic investigation of that has been performed, at least, for 
the kinds of EDM models investigated here. Given that AIC is 
more lenient, one might suspect it would be more susceptible to 
favoring models that over-fitted the data.  On the other hand, BIC 
might over penalize more complex models that indeed do capture 
true variability in the data. Many of the previous efforts to 
evaluate knowledge component models in EDM have used BIC as 
the evaluation criteria including Learning Factors Analysis (LFA) 
[3], Performance Factors Analysis (PFA) [11], and Instructional 
Factors Analysis (IFA) [4].  

2. DATA AND METHOD 
DataShop has grown to include almost 400 datasets as of 
February 2013. One of the fundamental features available in 
DataShop is the ability to fit different KC Models to a dataset. 
There are a number of ways KC Models can be generated with 
DataShop. 
1) KC Models can be imported with log data of an initial dataset.  
2) KC Models can be exported, modified, and re-imported 

through DataShop’s intuitive user interface (Examples of this 
can be seen in the DataShop tutorial channel on Youtube [5]). 

3) KC Models can be automatically generated by automated 
search algorithms such as  LFA Search[8]. 

4)  Every imported dataset automatically gets 2 models generated 
by DataShop- the Unique Step Model, which includes a KC 
for every step, and the Single KC model, which applies the 
same KC to every step. 

 
Currently, there are 1,943 proposed KC Models in DataShop that 
were used for this analysis. Two conditions were established for a 

dataset to be included in the analysis: (1) three or more models 
with an equal number of observations were required and (2) the 
number of observations had to be greater than 800. We found 50 
datasets within DataShop that met the conditions and 12 of them 
had more than one grouping of models (10 had 2 sets; 1 had 3 sets 
and 1 had 4 sets) for a total of 65 comparable KC sets. In addition 
to the aforementioned diversity of content and technology, the 65 
KC sets have a broad range of the number of parameters (9 to 
654), models (3 to 48), students (7 to 510), knowledge 
components (1 to 287), and observations (884 to 95,512). Such 
variation provides a rich environment for a deep analysis into 
what might be the best measure for model selection.  As shown in 
Figure 1, DataShop provides a leaderboard of commonly used 
metrics across models within a dataset.  We examined the 
correlations and rank order correlations for AIC, BIC, and Cross-
validation across the 65 KC sets. We chose to report rank order 
correlations in addition to correlations because it is less sensitive 
to outliers that may excessively inflate (or, less frequently, lower) 
a correlation.   

3. RESULTS AND DISCUSSION  
After running the correlations between the metrics, we found that 
for the majority of KC sets (44 of 65), AIC and BIC do not agree 
on which model best fits the data. More importantly, AIC is 
overwhelmingly the better predictor when compared with cross 
validation best models (an average 94% match vs. BIC’s 33%).  
To be more precise, of the 44 comparable KC sets, 41 of AIC best 
models match with SSCV best models vs. 13 for BIC, for ISCV - 
41 AIC best models match vs. 14 for BIC, and for NSCV - 42 
AIC best models match vs. 16 for BIC.  It is noteworthy that the 
three AIC best models that do not match with at least one cross 
validation best model have a substantially lower average number 
of KCs (12) and number of observations (5,941) than the 41 
models with a match (average of 53 KCs and 17,374 
observations). This appears to be because the AIC implementation 
in DataShop does not take into account second order Akaike 
Information Criterion (AICC) which has an adjustment for smaller 
sample sizes in relation to number of parameters [1]. As an 
example, Table 1 shows a small subset of the 65 comparable KC 
sets illustrating a strong positive correlation between AIC and 

Table 2. Correlations and rank order correlations across the five metrics provided in DataShop (AIC, BIC, SSCV,ISCV and NSCV). 

 
AIC-
BIC 

AIC-
SSCV 

AIC-
ISCV 

AIC-
NSCV 

BIC-
SSCV 

BIC-
ISCV 

BIC-
NSCV 

SSCV-
ISCV 

SSCV-
NSCV 

ISCV-
NSCV 

Correlation
s 0.574 0.824 0.891 0.890 0.522 0.464 0.446 0.812 0.777 0.919 

Rank Corr.  0.532 0.817 0.852 0.847 0.478 0.403 0.420 0.760 0.735 0.868 

 

Table 1. AIC and BIC correlations against each other and Cross-validation 

KC set name # 
students 

# 
models 

# 
obs 

 

AIC-BIC 
correl 

AIC-correlation BIC-correlation 

SSCV ISCV NSCV SSCV ISCV NSCV 

Assistments Math 2008-2009 
Symb-DFA (302 Students) 302 31 8181 0.666 0.936 0.994 0.989 0.438 0.662 0.630 
Assistments Math 2008-2009 
Symb-DFA (302 Students) 302 23 4957 0.986 0.956 0.977 0.973 0.961 0.961 0.961 
OLI Engineering Statics - Fall 
2011 - CMU (74 students) 74 4 71805 0.973 0.967 1.000 0.999 0.882 0.976 0.979 
OLI Engineering Statics - Fall 
2011 - CMU (74 students) 74 5 37423 0.983 0.989 0.650 0.996 0.999 0.568 0.972 
IWT Self-Explanation Study 2 
(Fall 2009) (tutors only) 99 13 7094 0.200 0.822 0.945 0.916 0.538 0.198 0.064 
 



each of the three cross validations regardless of whether the AIC-
BIC correlation is strong (rows 2-4), weak (row 5) or average 
(row 1). In all but one instance, the AIC correlations with cross 
validation are better than BIC. Table 2 shows the average 
correlations and rank correlations between AIC, BIC, and the 
Cross-validations (as stated earlier, three types of ten-fold cross 
validations are reported in DataShop: student stratified cross 
validation (SSCV), item stratified cross validation (ISCV) and 
non-stratified cross validation (NSCV)). From these averages in 
Table 2, AIC and BIC have correlations with each other of just 
over 0.5, which makes sense since they often do not agree on the 
best fitting model. More importantly, AIC is a better predictor 
than BIC of all three kinds of cross validation.  Interestingly, table 
2 shows SSCV is better indicated by AIC than the other CV 
metrics.   

Thus, on those grounds, it seems as though AIC is the best single 
measure. In general, AIC best models average more knowledge 
components (53 vs. 34) and more parameters (205 vs. 166) than 
BIC best models.  It is not surprising, then, that there is a high 
level of disagreement between best model selections for AIC and 
BIC (68% do not match).  When comparing the best models of 
AIC and BIC to the best models of all three types of cross 
validation, AIC again matches better than BIC (approximately 
70% to 10%).  This better matching of best models is another 
strong argument that AIC is a better metric for model selection.     

4. CONCLUSION AND FUTURE WORK 
Although cross validation is the gold-standard for model 
selection, it is not a reasonable metric to use for computationally 
expensive processes, such as inside the LFA search, as it is too 
time consuming. Efficiency concerns together with uncertainty 
about which is a better heuristic led us to a detailed comparison of 
AIC/BIC across datasets and many models. Our evidence points 
toward AIC as the better predictor of cross validation results.   

A possible reason may follow from the fact that AIC favors 
greater complexity within models than BIC. While the KC models 
in DataShop are a good approximation of student cognitive 
processing, it is quite likely that they significantly under-represent 
the true complexity of student thinking.  Thus, rather than the 
higher bias toward simplicity that is implicit in BIC, it may be 
that higher complexity is a better prior belief.  The true (more rich 
and complex) cognitive model is most likely outside the space of 
models that we are searching within and AIC is claimed to be 
better than BIC in such circumstances [14]. On the one hand, it is 
a positive sign of maturity of the field of Educational Data Mining 
that we now have so many datasets and so many alternative KC 
models that a comparison like this one is possible.  On the other 
hand, it is clear that more and better research is needed to better 
uncover the true complexity and richness of student thinking.  

It is also important to note that AIC and BIC are not the only 
model selection metrics available, and in the future we hope to 
explore alternatives for possible inclusion in DataShop. Further, 
the only statistical model used in this analysis was AFM. While 
we expect that the results would be similar with other regression 
based statistical models (such as PFA or IFA), we have 
implemented a facility in DataShop to accept external analyses, 
and we plan to score additional statistical models across the 
DataShop metrics using the external analyses support.   

We thank the DataShop team for providing custom reports of the 
KC Model metrics and Hui Cheng for help with the LFA Search. 

5. REFERENCES 
[1] Burnham, K., P., Anderson, D., R. Model selection and 

multimodel inference. a practical information-theoretic 
approach. New York: Springer; 2002. 

[2] Burnham, K. P.; Anderson, D. R. (2004), "Multimodel 
inference: understanding AIC and BIC in Model Selection", 
Sociological Methods and Research 33: 261–304. 

[3] Cen, H., Koedinger, K. R., & Junker, B. (2006). Learning 
Factors Analysis: A general method for cognitive model 
evaluation and improvement. In Proceedings of the 8th 
International Conference on ITS, 164-175. Springer-Verlag. 

[4] Chi, M., Koedinger, K., Gordon, G., Jordan, P., and 
VanLehn, K. (2011). Instructional factors analysis: A 
cognitive model for multiple instructional interventions. In 
Proceedings of the 4th International Conference on 
Educational Data Mining. Eindhoven, the Netherlands 

[5] DataShop Tutorial 2: Exploring an alternative skill model. In 
DataShop Youtube Channel. Retrieved 2/25/13. From 
www.youtube.com/user/datashoptutorials 

[6] Draney, K.L., Pirolli, P., & Wilson, M. (1995). A 
measurement model for complex cognitive skill. In P. 
Nichols, S.F. Chipman, & R.L. Brennan (Eds.), Cognitively 
diagnostic assessment (pp. 103–126). Hillsdale: Erlbaum. 

[7] Koedinger, K.R. & McLaughlin, E.A. (2010). Seeing 
language learning inside the math: Cognitive analysis yields 
transfer. In S. Ohlsson & R. Catrambone (Eds.), Proceedings 
of the 32nd Conference of the Cognitive Science Society. (pp. 
471-476.) Austin, TX: Cognitive Science Society. 

[8] Koedinger, K. R., McLaughlin, E. A., & Stamper, J. C. 
(2012). Automated Student Model Improvement.  
Proceedings of the 5th International Conference on 
Educational Data Mining. (pp. 17-24) Chania, Greece. 

[9] Koedinger, K. R., Stamper, J. C., McLaughlin, E. A., & 
Nixon, T. (2013). Using data-driven discovery of better 
student models to improve student learning. (Submitted). 
AIED 2013 - The 16th International Conference on AIED. 

[10] Koedinger, K.R., Baker, R.., Cunningham, K., Skogsholm, 
A., Leber, B., Stamper, J., (2011) A Data Repository for the 
EDM community: The PSLC DataShop. In Handbook of 
Educational Data Mining. CRC Press.  

[11] Pavlik Jr., P.I., Cen, H., Koedinger, K.R.: Learning Factors 
Transfer Analysis: Using Learning Curve Analysis to 
Automatically Generate Domain Models. In Proceedings of 
the the 2nd International Conference on Educational Data 
Mining, Cordoba, Spain, pp. 121-130 (2009). 

[12] Stamper, J. & Koedinger, K.R. (2011). Human-machine 
student model discovery and improvement using data. In J. 
Kay, S. Bull & G. Biswas (Eds.), Proceedings of the 15th 
International Conference on AIED, pp. 353-360. Springer. 

[13] Tatsuoka, K.K. (1983) Rule space: An approach for dealing 
with misconceptions based on item response theory. Journal 
of Educational Measurement, 20, 345-354. 

[14] Yang, Y. (2005). Can the strengths of AIC and BIC be 
shared? A conflict between model identification and 
regression estimation. Biometrika 92: 937–950. 


