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Abstract 
Linkage Objects for Generalized Instruction in Coding (LOGIC) 
is an intelligent system for online tutoring which detects errors 
among programming exercises to improve understanding of stu-
dent progress.  This system represents an implementation of the 
Hint Factory method for automated hint generation.  In this ap-
proach, variables and their dependencies are abstracted from cor-
rect coding solutions to determine all the possible paths towards a 
solution, regardless of the programming language or variable 
names.  Incomplete programs can be compared to these unique 
paths after code normalization, and the next best line can be sup-
plied in the form of a hint.  Errors are recorded based on discrep-
ancy between best-match and the student’s code.  The final report 
categorizing all errors is compiled to benefit the teacher’s effec-
tiveness, highlighting common errors made by students. 

 Introduction   
The project Linkage Objects for Generalized Instruction in 
Coding (LOGIC) represents a revolutionary advance in 
adaptive educational systems for computer programming 
by using data collected from previous exercises to automat-
ically generate hints and feedback for students coding in an 
integrated development environment (IDE).  This work 
aims to help students succeed in developing solid coding 
skills and best coding practices.  Previous Intelligent Tu-
toring Systems (ITSs) for computer programming have 
been shown to be extremely effective, yet have not gained 
widespread use due to the cost of rebuilding the tutors 
when the current programming languages change.  LOGIC 
is designed to address this issue with a generalizable model 
that uses data to create the tutor, so that any programming 
language can be used.  

Background 
Computer science education is increasingly important to 
the country’s and the world’s prosperity and advancement.  
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Congress recently passed a sweeping update of US educa-
tion policy, designating computer science as a core con-
tributor to a well-rounded education.  Further, President 
Obama highlighted the importance of computer science 
education in his final State of the Union address.  In 2017 
it was announced there would be a $200 million per year 
commitment for computer science education in America’s 
schools.  Tech firms, such as Google, Amazon, Salesforce, 
Microsoft, and Facebook have pledged an additional $300 
million dollars towards this effort.  Computer literacy is 
quickly becoming one of the most important skills for in-
teresting and well-paying careers. 
 Decades of previous research has shown that static, one-
size-fits-all training is not as efficient or as effective as 
adaptive instruction that changes based on the student’s 
current understanding of the material.  This is also true of 
adaptive tutors for programming (Koedinger et al. 1995; 
Corbett and Anderson, 1995).  An intelligent tutor for pro-
gramming is not a new idea. The LISP tutor was the first 
ITS for programming (Anderson and Skwarecki 1986) and 
was a cognitive tutor using production rules (Corbett and 
Anderson, 1992).  Students using the LISP tutor completed 
coding assignments 30% faster and scored 43% better on a 
post-test than students doing coding assignments without a 
tutor (Anderson, Conrad, and Corbett 1989).  Help-seeking 
behaviors were studied with the LISP tutor (Anderson and 
Reiser 1985), and this research showed that tutors contain-
ing intelligent feedback exhibited time improvements with 
no loss in accuracy.  Using the same framework, a later 
version called the ACT Programming tutor was imple-
mented in LISP, Prolog, and Pascal; however, these tutors 
are no longer in use today.  Experts were required to create 
the production rules used in these tutors, which made it 
challenging to port the methodology to new languages. 
 Although SQL is not a true programming language, 
there have been tutors created to help teach SQL in the 
context of database queries.  One such tutor is the SQL Tu-
tor (Mitrovic and Martin 2002), which is a constraint-based 
tutor.  These tutors are only concerned with the student’s 
current state and problem-constraint violations within that 
state.  The hints provided, therefore, are “one size fits all,” 
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based on the current state rather than the type of learner.  
These tutors generally require less time to construct and 
tend to work well for less procedural problems.  SQL Tutor 
has been used extensively and today is supplied as a free 
web-based supplement to Addison Wesley’s SQL text-
books (since 2006).  Studies have shown that students us-
ing the tutor scored 11.5% points higher than those not 
(Mitrovic and Ohlsson 1999).  The constraints are created 
by experts for the set of commands used in SQL. 
 One ITS for coding, specific for C++, uses a method 
termed Pre-programming Analysis Guided Programming 
or PAGP (Jin 2008).  This tutor presents the student with a 
series of drop down options to choose the correct next line 
from a group of available options.  As such it requires ex-
perts to manually input the options for each programming 
step, making it generally cost-prohibitive to implement. 
 With the techniques developed during this project, we 
can add such adaptability automatically.  Using an exten-
sion of the Hint Factory methods (Stamper, Barnes, and 
Croy 2007), LOGIC learns the content and the context that 
previous students used to successfully solve a program-
ming exercise, and uses this knowledge to provide next-
step hints.  This technique can be applied to any type of 
programming language provided an interface exists to cap-
ture student solutions. 
 While most IDEs provide syntactical assistance, there 
are no products that have an integrated solution for assis-
tance on higher-level development strategies, which repre-
sents a clear drawback of current technology.  To address 
this need, this work introduces the idea of linkage objects, 
which are objects that allow abstraction of different code 
segments of computer programs into comparable objects.  
These objects can be linked into a graph of known possible 
paths.  Applying Markov models to this path allows the 
technology to present the learner with context-specific 
hints and feedback as they are completing the exercise.  
 By using these methods to improve educational soft-
ware, we can dramatically reduce the costs of adding hint 
capabilities, expanding the market for computer-based 
training in programming without necessitating a complete 
redevelopment for every new programming language (or 
updated existing language).   
 This effort builds on previous successful implementation 
of the Hint Factory in a tutor used to teach deductive logic 
through solving logic proofs.  When a student is stuck, the 
Hint Factory can automatically generate a hint by suggest-
ing the next best step, based on the graph of solutions cre-
ated from previous student attempts.  Previous results have 
shown that students using a logic tutor augmented with the 
Hint Factory attempted and completed significantly more 
logic proof problems, were significantly less likely to 
abandon the tutor, and performed better on a post-test im-
plemented within the tutor (Stamper, Barnes, and Croy 
2010).  
 Traditional intelligent tutors work by giving students 
hints and feedback adapted to the individual student.  

Marking student work as right or wrong is a simple form of 
feedback that can often be automated, but automatically 
generating formative feedback is a much more complex 
problem.  Shute’s review of the literature suggests that ef-
fective formative feedback should be multidimensional and 
credible, specific but not evaluative, and infrequent but 
timely (Shute 2008).  Determining the timing and frequen-
cy of hints is a particular challenge, but studies suggest that 
offering hints based on student choice can have positive ef-
fects on learning (Razzaq and Heffernan 2010; Aleven et 
al. 2004; Shih, Koedinger, and Scheines 2008).  Previous 
research has shown that students often know how to exe-
cute the steps needed to solve multi-step problems but may 
have trouble choosing what to do next (Stamper, Barnes, 
Croy 2008).  Our on-demand, context-specific system ad-
dresses this issue, and can be applied in many domains. 

Methodology 
The foundation of the LOGIC framework consists of the 
Markov decision process (MDP) generator and the hint 
provider.  The MDP generator is an offline process that as-
signs values to the states that have occurred in student 
problem attempts once they have been made into a graph.  
These values are then used by the hint provider to select 
the next “best” state or action at any point in the problem 
space.  An MDP is defined by its state set S, action set A, 
transition probabilities T, and a reward function R. The 
goal of using an MDP is to determine the best policy, or set 
of actions students have taken at each state s that maximize 
its expected cumulative utility.  The expected cumulative 
value function can be calculated recursively using value it-
eration.  For a particular point in a student’s problem at-
tempt, a state consists of the list of the features the student 
has generated so far.  In our previous work for a logic tu-
tor, the features of the states were simply the premises and 
statements that had been derived at that point in the stu-
dent’s solution.  The actions in the logic tutor implementa-
tion were the rules used at each step.  Actions are directed 
arcs that connect consecutive states. 
 Therefore, each problem attempt can be seen as a graph 
with a sequence of states connected by actions.  We com-
bine all student solution graphs into a single graph, by tak-
ing the union of all states and actions, and mapping identi-
cal states to one another.  Once this graph is constructed, it 
represents all of the paths students have taken in working a 
problem.  Next, value iteration is used to find an optimal 
solution to the MDP.  We apply value iteration using a 
Bellman backup to iteratively assign values to all states in 
the MDP until the values converge.  By identifying a new 
student’s state in the graph we can point them to the next 
state in the graph with the highest state value. 
 When the MDP generator is applied to example data, a 
Markov chain consisting of six states is created.  This 
Markov chain can be seen in Figure 1.  Each state is con-
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nected via the action that was used to reach that state.  
Combining the Markov chain seen in Figure 1 with all oth-
er student attempts for this problem creates a large graph of 
all “known” student solutions. 

 
Figure 1. Markov Chain showing the states and actions created 
from the example data. 

 To make the abstraction of state feature for computer 
programming we introduce the concept of “linkages.”  A 
linkage is a graph following the use of a distinct variable in 
a program.  Linkages can provide one abstraction for state 
features in coding and may be enough to provide students 
with useful hints.  Normalizing the variables in each 
linkage helps identify identical linkages across many 
students’ programs.  A code snippet of a simple example 
program and its linkages can be seen in Figure 2. 
 The program asks for the base and the height of a 
triangle and then outputs the area.  In the right box of the 
figure, the three created linkages are seen.  One linkage is 
created for each variable used in the program, normalizing 
variable names.  Even with this small example, we could 
imagine many ways that students could calculate the area 
of a triangle.  Instead of [A = .5(B*C)], one student might 
try [A = .5(C*B)], or another might try [A=(B*C)/2]. 

 
Figure 2. Sample code snippet used to calculate the area of a tri-
angle and the resulting linkages. 

 With the Hint Factory, all of these ways are fine, but if 
the student requests a hint on a path just before this 
equation, the Hint Factory will give them a hint along the 
path that is currently closest to their own that has the 
highest chance of leading them to a correct solution.  More 
frequent linkages get a higher value, and are used more 
often. 
 For data collection, we used the open-source, web-based 
IDE CloudCoder (Figure 3), because it already includes a 
platform for creating and assigning short programming 
exercises for a variety of programming languages, and 
currently includes C/C++, Java, Python, and Ruby.  
CloudCoder is web-based, letting students write code 
directly in a web browser, click the "submit" button, and 

receive immediate feedback.  Unlike other systems, which 
tend to be closed, commercial, or both, CloudCoder is a 
completely open platform.  The code for the system is 
open-source, and exercises written for CloudCoder may be 
shared to a central repository under permissive licenses.  
And significantly, CloudCoder is designed to provide 
formative feedback for students, automatically grading 
each submission based on test-cases. 

 
Figure 3. Screen shot of CloudCoder web-based IDE. 

Results 
We collected student data across multiple classrooms and 
two different programming languages (C++ and Java), we 
processed and analyzed this data, providing abstracted re-
sults (matrices), hint coverage, and error classification.  
Here we implemented the LOGIC method using two pro-
cesses: one process works with correct submissions, while 
the second compares the incorrect solutions to the correct 
submissions to find a detrimental error.  The first process 
determines unique paths by creating matrices representing 
the occurrence of variables on each line.  By abstracting 
the variables in this way, we can create matrices that can 
be compared across programming languages.  Further, this 
ensures that superficial differences, such as students using 
different variable names or declaring variables in a differ-
ent order, won’t be used to wrongly classify solutions. 
 The second process dynamically compares the erroneous 
code’s matrix to each of the matrices representing correct 
submissions.  After finding a similar match, the system 
normalizes the code and analyzes each line using text 
comparison.  Once a difference is found, the system further 
analyzes the line to determine the line’s function and spe-
cific error.  Occasionally, a line that is not identical to the 
matching code is actually performing the same function.  
For instance, the line “sum += i” is producing the same re-
sult at “sum = sum + i.”  With string manipulation and 
comparisons, LOGIC is able to recognize when superficial-
ly different lines are essentially the same. 
 Each line type has specific errors associated with it.  For 
example, the for-loop line type encompasses the following 
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errors: incorrect boundary variables, off-by-one error due 
to comparison symbol, failed to include for-loop, used an 
unneeded for-loop, iteration error, and comparison symbol 
in wrong direction.  This list is ordered from most to least 
frequented mistakes in the C++ dataset.  All of the errors 
are tallied and visually displayed for the instructor. 
 Four problems were selected for testing, ones that con-
tained ample incorrect and correct student submissions.  
These four problems were: add elements in an array, de-
termine if an array is ascending, determine the largest of 
three numbers, and compute the sum between two num-
bers.  Analyzing the C++ coding language, LOGIC correct-
ly identified an error in 234 out of 260 wrong submissions, 
resulting in 90% accuracy.  (The IDE used here will identi-
fy correct solutions already; hence, there is no need to test 
for false positives.)  The system also flagged 15 submis-
sions containing hardcoded answers.  LOGIC correctly 
identified errors in 88 of the 104 Java submissions and de-
tected one hardcoded submission resulting in 84% accura-
cy.  Interestingly, students among both languages carried 
similar error tendencies, with for-loops and return state-
ment errors being the most popular, while errors in method 
headers and variable assignments were the least common. 

Discussion 
The process for abstracting out the variables, and basing 
each program’s uniqueness on the variable matrix is large-
ly successful here, representing a crude but effective meth-
od for abstraction and comparison across students and lan-
guages.  Our further analysis, examining and classifying 
the types of errors, indicates that such errors tend to follow 
similar patterns, at least for these problems and program-
ming languages.  This indicates that it may be tractable to 
customize error-type classification for widespread use. 
 LOGIC’s hint generation can be implemented by offer-
ing the next matching line to the student.  However, as 
seen above, a replaced line is sometimes not what the stu-
dent needs.  Conversely, a student might need to ask for a 
hint more than once, if a single correction is not going to  
fix the program, and the student has trouble seeing where 
the first correction is leading.   
 However, for LOGIC to be able to give hints, it only re-
quires one previously successful solution that matches a 
current student’s path.  Further, we can always back up a 
path on the graph until we find a match, which means we 
can always give a hint, though the hint will be in better 
context the closer it is to the student’s current state. 
 Based on these initial results we believe the use of link-
ages as state features will be applicable to computer pro-
gramming given enough data.  An initial list of good state 
features will be derived using the linkages extracted from 
programming examples that are complete and correct.  The 
combination of all linkages for one program makes a single 
graph of states and actions that can be used as a MDP.  

Further research across complex programs in our C++, Ja-
va, and Python datasets will provide a stronger basis for 
extending the Hint Factory framework for programming.  
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