

Linkage Objects for Generalized Instruction in Coding (LOGIC)

Ted Carmichael,1,2 Mary Jean Blink,2 John Stamper,2,3 Elizabeth Gieske2,4
1University of North Carolina at Charlotte, Charlotte, NC, USA

2TutorGen, Inc., Fort Thomas, KY, USA
3Carnegie Mellon University, Pittsburgh, PA, USA

4Northern Kentucky University, Highland Heights, KY, USA
tedsaid@gmail.com, mjblink@tutorgen.com, john@stamper.org, gieskee1@nku.edu

Abstract
Linkage Objects for Generalized Instruction in Coding (LOGIC)
is an intelligent system for online tutoring which detects errors
among programming exercises to improve understanding of stu-
dent progress. This system represents an implementation of the
Hint Factory method for automated hint generation. In this ap-
proach, variables and their dependencies are abstracted from cor-
rect coding solutions to determine all the possible paths towards a
solution, regardless of the programming language or variable
names. Incomplete programs can be compared to these unique
paths after code normalization, and the next best line can be sup-
plied in the form of a hint. Errors are recorded based on discrep-
ancy between best-match and the student’s code. The final report
categorizing all errors is compiled to benefit the teacher’s effec-
tiveness, highlighting common errors made by students.

 Introduction
The project Linkage Objects for Generalized Instruction in
Coding (LOGIC) represents a revolutionary advance in
adaptive educational systems for computer programming
by using data collected from previous exercises to automat-
ically generate hints and feedback for students coding in an
integrated development environment (IDE). This work
aims to help students succeed in developing solid coding
skills and best coding practices. Previous Intelligent Tu-
toring Systems (ITSs) for computer programming have
been shown to be extremely effective, yet have not gained
widespread use due to the cost of rebuilding the tutors
when the current programming languages change. LOGIC
is designed to address this issue with a generalizable model
that uses data to create the tutor, so that any programming
language can be used.

Background
Computer science education is increasingly important to
the country’s and the world’s prosperity and advancement.

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

Congress recently passed a sweeping update of US educa-
tion policy, designating computer science as a core con-
tributor to a well-rounded education. Further, President
Obama highlighted the importance of computer science
education in his final State of the Union address. In 2017
it was announced there would be a $200 million per year
commitment for computer science education in America’s
schools. Tech firms, such as Google, Amazon, Salesforce,
Microsoft, and Facebook have pledged an additional $300
million dollars towards this effort. Computer literacy is
quickly becoming one of the most important skills for in-
teresting and well-paying careers.
 Decades of previous research has shown that static, one-
size-fits-all training is not as efficient or as effective as
adaptive instruction that changes based on the student’s
current understanding of the material. This is also true of
adaptive tutors for programming (Koedinger et al. 1995;
Corbett and Anderson, 1995). An intelligent tutor for pro-
gramming is not a new idea. The LISP tutor was the first
ITS for programming (Anderson and Skwarecki 1986) and
was a cognitive tutor using production rules (Corbett and
Anderson, 1992). Students using the LISP tutor completed
coding assignments 30% faster and scored 43% better on a
post-test than students doing coding assignments without a
tutor (Anderson, Conrad, and Corbett 1989). Help-seeking
behaviors were studied with the LISP tutor (Anderson and
Reiser 1985), and this research showed that tutors contain-
ing intelligent feedback exhibited time improvements with
no loss in accuracy. Using the same framework, a later
version called the ACT Programming tutor was imple-
mented in LISP, Prolog, and Pascal; however, these tutors
are no longer in use today. Experts were required to create
the production rules used in these tutors, which made it
challenging to port the methodology to new languages.
 Although SQL is not a true programming language,
there have been tutors created to help teach SQL in the
context of database queries. One such tutor is the SQL Tu-
tor (Mitrovic and Martin 2002), which is a constraint-based
tutor. These tutors are only concerned with the student’s
current state and problem-constraint violations within that
state. The hints provided, therefore, are “one size fits all,”

The Thirty-First International Florida
Artificial Intelligence Research Society Conference (FLAIRS-31)

443

based on the current state rather than the type of learner.
These tutors generally require less time to construct and
tend to work well for less procedural problems. SQL Tutor
has been used extensively and today is supplied as a free
web-based supplement to Addison Wesley’s SQL text-
books (since 2006). Studies have shown that students us-
ing the tutor scored 11.5% points higher than those not
(Mitrovic and Ohlsson 1999). The constraints are created
by experts for the set of commands used in SQL.
 One ITS for coding, specific for C++, uses a method
termed Pre-programming Analysis Guided Programming
or PAGP (Jin 2008). This tutor presents the student with a
series of drop down options to choose the correct next line
from a group of available options. As such it requires ex-
perts to manually input the options for each programming
step, making it generally cost-prohibitive to implement.
 With the techniques developed during this project, we
can add such adaptability automatically. Using an exten-
sion of the Hint Factory methods (Stamper, Barnes, and
Croy 2007), LOGIC learns the content and the context that
previous students used to successfully solve a program-
ming exercise, and uses this knowledge to provide next-
step hints. This technique can be applied to any type of
programming language provided an interface exists to cap-
ture student solutions.
 While most IDEs provide syntactical assistance, there
are no products that have an integrated solution for assis-
tance on higher-level development strategies, which repre-
sents a clear drawback of current technology. To address
this need, this work introduces the idea of linkage objects,
which are objects that allow abstraction of different code
segments of computer programs into comparable objects.
These objects can be linked into a graph of known possible
paths. Applying Markov models to this path allows the
technology to present the learner with context-specific
hints and feedback as they are completing the exercise.
 By using these methods to improve educational soft-
ware, we can dramatically reduce the costs of adding hint
capabilities, expanding the market for computer-based
training in programming without necessitating a complete
redevelopment for every new programming language (or
updated existing language).
 This effort builds on previous successful implementation
of the Hint Factory in a tutor used to teach deductive logic
through solving logic proofs. When a student is stuck, the
Hint Factory can automatically generate a hint by suggest-
ing the next best step, based on the graph of solutions cre-
ated from previous student attempts. Previous results have
shown that students using a logic tutor augmented with the
Hint Factory attempted and completed significantly more
logic proof problems, were significantly less likely to
abandon the tutor, and performed better on a post-test im-
plemented within the tutor (Stamper, Barnes, and Croy
2010).
 Traditional intelligent tutors work by giving students
hints and feedback adapted to the individual student.

Marking student work as right or wrong is a simple form of
feedback that can often be automated, but automatically
generating formative feedback is a much more complex
problem. Shute’s review of the literature suggests that ef-
fective formative feedback should be multidimensional and
credible, specific but not evaluative, and infrequent but
timely (Shute 2008). Determining the timing and frequen-
cy of hints is a particular challenge, but studies suggest that
offering hints based on student choice can have positive ef-
fects on learning (Razzaq and Heffernan 2010; Aleven et
al. 2004; Shih, Koedinger, and Scheines 2008). Previous
research has shown that students often know how to exe-
cute the steps needed to solve multi-step problems but may
have trouble choosing what to do next (Stamper, Barnes,
Croy 2008). Our on-demand, context-specific system ad-
dresses this issue, and can be applied in many domains.

Methodology
The foundation of the LOGIC framework consists of the
Markov decision process (MDP) generator and the hint
provider. The MDP generator is an offline process that as-
signs values to the states that have occurred in student
problem attempts once they have been made into a graph.
These values are then used by the hint provider to select
the next “best” state or action at any point in the problem
space. An MDP is defined by its state set S, action set A,
transition probabilities T, and a reward function R. The
goal of using an MDP is to determine the best policy, or set
of actions students have taken at each state s that maximize
its expected cumulative utility. The expected cumulative
value function can be calculated recursively using value it-
eration. For a particular point in a student’s problem at-
tempt, a state consists of the list of the features the student
has generated so far. In our previous work for a logic tu-
tor, the features of the states were simply the premises and
statements that had been derived at that point in the stu-
dent’s solution. The actions in the logic tutor implementa-
tion were the rules used at each step. Actions are directed
arcs that connect consecutive states.
 Therefore, each problem attempt can be seen as a graph
with a sequence of states connected by actions. We com-
bine all student solution graphs into a single graph, by tak-
ing the union of all states and actions, and mapping identi-
cal states to one another. Once this graph is constructed, it
represents all of the paths students have taken in working a
problem. Next, value iteration is used to find an optimal
solution to the MDP. We apply value iteration using a
Bellman backup to iteratively assign values to all states in
the MDP until the values converge. By identifying a new
student’s state in the graph we can point them to the next
state in the graph with the highest state value.
 When the MDP generator is applied to example data, a
Markov chain consisting of six states is created. This
Markov chain can be seen in Figure 1. Each state is con-

444

nected via the action that was used to reach that state.
Combining the Markov chain seen in Figure 1 with all oth-
er student attempts for this problem creates a large graph of
all “known” student solutions.

Figure 1. Markov Chain showing the states and actions created
from the example data.

 To make the abstraction of state feature for computer
programming we introduce the concept of “linkages.” A
linkage is a graph following the use of a distinct variable in
a program. Linkages can provide one abstraction for state
features in coding and may be enough to provide students
with useful hints. Normalizing the variables in each
linkage helps identify identical linkages across many
students’ programs. A code snippet of a simple example
program and its linkages can be seen in Figure 2.
 The program asks for the base and the height of a
triangle and then outputs the area. In the right box of the
figure, the three created linkages are seen. One linkage is
created for each variable used in the program, normalizing
variable names. Even with this small example, we could
imagine many ways that students could calculate the area
of a triangle. Instead of [A = .5(B*C)], one student might
try [A = .5(C*B)], or another might try [A=(B*C)/2].

Figure 2. Sample code snippet used to calculate the area of a tri-
angle and the resulting linkages.

 With the Hint Factory, all of these ways are fine, but if
the student requests a hint on a path just before this
equation, the Hint Factory will give them a hint along the
path that is currently closest to their own that has the
highest chance of leading them to a correct solution. More
frequent linkages get a higher value, and are used more
often.
 For data collection, we used the open-source, web-based
IDE CloudCoder (Figure 3), because it already includes a
platform for creating and assigning short programming
exercises for a variety of programming languages, and
currently includes C/C++, Java, Python, and Ruby.
CloudCoder is web-based, letting students write code
directly in a web browser, click the "submit" button, and

receive immediate feedback. Unlike other systems, which
tend to be closed, commercial, or both, CloudCoder is a
completely open platform. The code for the system is
open-source, and exercises written for CloudCoder may be
shared to a central repository under permissive licenses.
And significantly, CloudCoder is designed to provide
formative feedback for students, automatically grading
each submission based on test-cases.

Figure 3. Screen shot of CloudCoder web-based IDE.

Results
We collected student data across multiple classrooms and
two different programming languages (C++ and Java), we
processed and analyzed this data, providing abstracted re-
sults (matrices), hint coverage, and error classification.
Here we implemented the LOGIC method using two pro-
cesses: one process works with correct submissions, while
the second compares the incorrect solutions to the correct
submissions to find a detrimental error. The first process
determines unique paths by creating matrices representing
the occurrence of variables on each line. By abstracting
the variables in this way, we can create matrices that can
be compared across programming languages. Further, this
ensures that superficial differences, such as students using
different variable names or declaring variables in a differ-
ent order, won’t be used to wrongly classify solutions.
 The second process dynamically compares the erroneous
code’s matrix to each of the matrices representing correct
submissions. After finding a similar match, the system
normalizes the code and analyzes each line using text
comparison. Once a difference is found, the system further
analyzes the line to determine the line’s function and spe-
cific error. Occasionally, a line that is not identical to the
matching code is actually performing the same function.
For instance, the line “sum += i” is producing the same re-
sult at “sum = sum + i.” With string manipulation and
comparisons, LOGIC is able to recognize when superficial-
ly different lines are essentially the same.
 Each line type has specific errors associated with it. For
example, the for-loop line type encompasses the following

445

errors: incorrect boundary variables, off-by-one error due
to comparison symbol, failed to include for-loop, used an
unneeded for-loop, iteration error, and comparison symbol
in wrong direction. This list is ordered from most to least
frequented mistakes in the C++ dataset. All of the errors
are tallied and visually displayed for the instructor.
 Four problems were selected for testing, ones that con-
tained ample incorrect and correct student submissions.
These four problems were: add elements in an array, de-
termine if an array is ascending, determine the largest of
three numbers, and compute the sum between two num-
bers. Analyzing the C++ coding language, LOGIC correct-
ly identified an error in 234 out of 260 wrong submissions,
resulting in 90% accuracy. (The IDE used here will identi-
fy correct solutions already; hence, there is no need to test
for false positives.) The system also flagged 15 submis-
sions containing hardcoded answers. LOGIC correctly
identified errors in 88 of the 104 Java submissions and de-
tected one hardcoded submission resulting in 84% accura-
cy. Interestingly, students among both languages carried
similar error tendencies, with for-loops and return state-
ment errors being the most popular, while errors in method
headers and variable assignments were the least common.

Discussion
The process for abstracting out the variables, and basing
each program’s uniqueness on the variable matrix is large-
ly successful here, representing a crude but effective meth-
od for abstraction and comparison across students and lan-
guages. Our further analysis, examining and classifying
the types of errors, indicates that such errors tend to follow
similar patterns, at least for these problems and program-
ming languages. This indicates that it may be tractable to
customize error-type classification for widespread use.
 LOGIC’s hint generation can be implemented by offer-
ing the next matching line to the student. However, as
seen above, a replaced line is sometimes not what the stu-
dent needs. Conversely, a student might need to ask for a
hint more than once, if a single correction is not going to
fix the program, and the student has trouble seeing where
the first correction is leading.
 However, for LOGIC to be able to give hints, it only re-
quires one previously successful solution that matches a
current student’s path. Further, we can always back up a
path on the graph until we find a match, which means we
can always give a hint, though the hint will be in better
context the closer it is to the student’s current state.
 Based on these initial results we believe the use of link-
ages as state features will be applicable to computer pro-
gramming given enough data. An initial list of good state
features will be derived using the linkages extracted from
programming examples that are complete and correct. The
combination of all linkages for one program makes a single
graph of states and actions that can be used as a MDP.

Further research across complex programs in our C++, Ja-
va, and Python datasets will provide a stronger basis for
extending the Hint Factory framework for programming.

References
Koedinger, K. R., Anderson, J. R., Hadley, W. H., & Mark, M. A.
(1995). Intelligent tutoring goes to school in the big city. In
Proceedings of the 7th World Conference on Artificial
Intelligence in Education.�
Corbett, A.T. and Anderson, J.R. (1995). Knowledge
decomposition and subgoal reification in the ACT programming
tutor. Artificial Intelligence and Education, 1995: The
Proceedings of AI-ED 95. Charlottesville, VA. �
Anderson A., Skwarecki, (1986). The Automated Tutoring of In-
troductory Computer Programming. Communications of the ACM
29: pp. 842-849.
Corbett, A. T. & Anderson, J. R. (1992). The LISP intelligent tu-
toring system: Research in skill acquisition. In J. Larkin, R.
Chabay, and C. Scheftic (Eds.), Computer Assisted Instruction
and Intelligent Tutoring Systems: Establishing Communication
and Collaboration. Hillsdale, NJ.
Anderson, JR; Conrad, FG; & Corbett, AT (1989). Skill acquisi-
tion and the LISP Tutor. Cog Science, 13, 467-506.
Anderson, J.R., & Reiser, B.J. (1985). The LISP tutor. Byte, 10,
159-175.
Mitrovic, A., Martin, B., (2002). Evaluating the Effects of Open
Student Models on Learning. Second International Conference on
Adaptive Hypermedia and Adaptive Web-Based Systems. Berlin,
Springer-Verlag: 296-305.
Mitrovic, A., Ohlsson, S. (1999). Evaluation of a Constraint-
Based Tutor for Database Language. Int. Journal of Artificial In-
telligence in Education 11(2): pp 238-256.
Jin, W. (2008). Pre-programming Analysis Tutors Help Students
Learn Basic Programming Concepts. In Proceedings of ACM
SIGCSE Technical Symposium on Computer Science Education.
March 12-15, Portland, OR, USA.
Stamper, J. C., Barnes, T., & Croy, M. (2007). Extracting student
models for intelligent tutoring systems. In Proc of the Natl Conf
on Artificial Intelligence (22, 2, p.1900). AAAI Press; MIT Press.
Stamper J., Barnes T., Croy M. (2010) Enhancing the Automatic
Generation of Hints with Expert Seeding. In: Aleven V., Kay J.,
Mostow J. (eds) Intelligent Tutoring Systems. ITS 2010. LNCS,
vol 6095. Springer, Berlin.
Shute, V.J., Focus on formative feedback. Review of Educational
Research, 2008. 78(1): p. 153-189.
Razzaq, L. & Heffernan, N. (2010). Hints: Is It Better to Give or
Wait to be Asked? In Aleven, V., Kay, J & Mostow, J. (Eds). Proc.
10th Intelligent Tutoring Systems (ITS2010) Part 1. Springer.
Pages 349-358.
Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2004). To-
ward tutoring help seeking: Applying cognitive modeling to meta-
cognitive skills. Proc. of the Seventh International Conference on
Intelligent Tutoring Systems.
Shih, B., Kenneth R. Koedinger, and Scheines, R. "A Response
Time Model For Bottom-Out Hints as Worked Examples." In
Educ. Data Mining, 2008, 117-126.

446

