Personalization, Non-Cognitive Factors, and Grain-Size for
Measurement and Analysis in Intelligent Tutoring Systems:
Implications for GIFT

Stephen E. Fancsalil, Steven Ritterl, John C. Stamperz, Susan Berman'
'Carnegie Learning, Inc., Pittsburgh, PA, USA
“Human-Computer Interaction Institute, Carnegie Mellon University, Pittsburgh, PA, USA

Introduction

One major goal of our Advanced Distributed Learning (ADL)-funded “Hyper-Personalized Intelligent
Tutor” (HPIT) project is to develop an architecture that allows for personalization of educational software
based on non-cognitive factors including student preferences, motivation, affect, and other features
(Fancsali, Ritter, Stamper & Nixon, 2013). We are particularly interested in using such information to
improve instruction within intelligent tutoring systems (ITSs) like Carnegie Learning’s Cognitive Tutor”
(CT) (Ritter, Anderson, Koedinger & Corbett, 2007) and in educational games like the mathematics
“fluency challenges” developed by the Math Fluency Data Collaborative project
(http://fluencychallenge.com). To better understand architectural features conducive to such “hyper-
personalization,” we have built on learning science researchers’ recent work focusing on particular
aspects of personalization and non-cognitive factors in both the CT and a middle school mathematics ITS
based on the CT called MATHia.'™

We review results of two recent observational studies with respect to the U.S. Army Research Laborato-
ry’s (ARL) Generalized Intelligent Framework for Tutoring (GIFT). In the first, we provide a causal
model of measures of goal orientation and self-efficacy (at multiple grain-sizes), behavioral measures in
the CT, and learning outcomes (Fancsali, Bernacki, Nokes-Malach, Ritter & Yudelson, in press). These
findings are consistent with research (Bernacki, Aleven & Nokes-Malach, 2012) showing that “domain-
level” (for the mathematics domain) and “unit-level” (for a CT unit of instruction) measures of goal
orientation and self-efficacy provide different information about learners and their outcomes. Such results
suggest that these measures are contextually bound and thus need to be assessed relatively frequently.

In the second study, we consider aggregate associations of in-tutor measures of performance with “honor-
ing” student preferences for interest arcas (e.g., “sports & fitness”) around which mathematics word
problems have been authored. We adopted a different approach from past research by considering
aggregate associations between honoring preferences and learning outcomes, in order to assess whether,
at the timeframe of a school year, we see influences of honoring student preferences. We found little if
any association between honoring student preferences and learning outcomes (Fancsali & Ritter, 2014;
Ritter, Sinatra & Fancsali, in press). Past experimental studies (Walkington 2013) have found effects at
finer levels of granularity (e.g., at the level of problems and skills). We speculate that the failure to find
such effects in our study may reflect the fact that, in the context of the full-year course, the opportunities
to honor student preferences are limited. This finding suggests that taking advantage of preference
honoring in an extended course may require more frequent or overt signaling about attention to student
interests.
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With respect to the GIFT architecture, we discuss a response to recent work (Otieno, Schwonke, Salden &
Renkl, 2013), due to Fancsali et al. (submitted), suggesting that using relatively simple log traces from
CT as “online measures” of goal orientation and how the aforementioned goal orientation and self-
efficacy study informs this response. Generally, we provide new recommendations for GIFT and a better,
data-driven foundation for recommendations concerning GIFT made by Fancsali, Ritter, Stamper &
Nixon (2013). We suggest future research in the areas of non-cognitive factors and personalization for
ITSs and development areas for HPIT and GIFT. Specifically, we emphasize that the grain-size of
measurement and analysis required for adaptation within a particular ITS or instructional system may be
different than that at which meaningful inferences (and corresponding adaptive instruction or tutoring
decisions) might be made across different ITSs or instructional systems.

Preliminaries

We begin by describing Carnegie Learning’s CT, the ITS which provides the impetus for our thinking
about hyper-personalization of instructional systems as well as the target platform for the research
projects we explicate. We then describe the HPIT project as well as two non-cognitive factors and a facet
of personalization along which such a hyper-personalized instructional system might tailor instruction. As
we proceed, we note an important aspect of adaptation or personalization in any such system: the level of
granularity or grain size at which adaptation or personalization occurs.

Cognitive Tutor (CT)

Carnegie Learning’s CT (cf. Figure 1 screenshot) is an ITS for mathematics that has been demonstrated
effective by one of the largest experimental trials of its kind (Pane, Griffin, McCaffrey & Karam, 2013).
CT provides adaptive instruction based on cognitive factors, specifically by tracking learners’ mastery of
fine-grained knowledge components (KCs) (i.e., skills) using a probabilistic framework called Bayesian
Knowledge Tracing (BKT) (Corbett & Anderson, 1995).
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Figure 21. Problem solving in Carnegie Learning’s CT

Mathematics curricula are divided into topical sections, each of which is associated with a set of KCs that
a student is required to master before progressing on to another section of instruction. Each multi-part
problem in a section is associated with a subset of its section’s KCs. Students are provided immediate
feedback about the correctness of attempts to complete steps in each problem; sometimes CT provides
just in time, context-sensitive feedback when students make errors that reflect known misconceptions. At
any step of problem solving, students can also request context-sensitive hints. While using ITSs to adapt
mathematics instruction based on cognitive factors like skill mastery is relatively well-understand (but
still a topic of on-going research), the use of non-cognitive factors to personalize and adapt instruction in
ITSs presents a wide variety of unanswered and open questions.

Hyper-Personalized Intelligent Tutors (HPIT)

Our HPIT project (Fancsali, Ritter, Stamper & Nixon, 2013) aims to develop a plug-in based architecture
and infrastructure to support personalized and adaptive learning, based on both cognitive and non-
cognitive factors, in a variety of computer-based instructional settings, including, but not limited to, ITSs
like CT and educational games. To truly “hyper-personalize” ITSs and other instructional systems, it is
necessary to better understand how non-cognitive factors can be harnessed to enhance learning in such
systems, and the HPIT project will provide a framework within which such research can take place, for
example, by allowing developers to integrate plug-ins to drive personalized instructions based on particu-
lar non-cognitive factors in which they are interested.
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To facilitate the development of such a software framework, a better understanding of particular meth-
odological and measurement issues that will arise in such personalization efforts is also required. This
understanding will not only improve the development of HPIT but will also help to drive integration and
interoperability (as well as illustrate possible contrasts) between HPIT and projects like GIFT. Findings
relevant to HPIT may also drive new recommendations for future development of GIFT. Specifically, we
briefly summarize recent work on goal orientation and self-efficacy as they relate to performance in the
CT as well as “honoring” student interest area preferences in an ITS for middle school mathematics that is
based on the CT. From methodological concerns and findings about specific non-cognitive constructs, we
hope to generalize insights to provide recommendations for GIFT. We focus on issues of measurement
and analysis grain-size and discuss implications for adaptation and tutoring within an instructional system
as well as open problems about making transferable inferences across instructional systems, both of
which are important issues relevant to GIFT.

Grain size and non-cognitive factors

We now turn our focus to analyses of process data and learning in the CT environment relative to two
non-cognitive factors: goal orientation and self-efficacy'. We begin by briefly introducing these con-
structs before considering issues about their measurement and grain-size before considering relationships
of these factors with learning outcomes in the CT in the following section.

Goal orientation and self-efficacy

Students’ achievement goals for learning are a key component of their motivation for learning. Dweck
(1986) identifies performance and achievement as two particular goal orientations. Students with a
performance goal orientation tend to define their goals relative to the performance of their peers or some
other group (i.e., to perform better than their peers) while those with a mastery goal orientation take
understanding a particular task or aspect of a domain as their goal. Elliot & McGregor (2001) later
distinguish between two “valences,” approach (success) and avoidance (of failure), for mastery and
performance goal orientation. For example, performance avoidance as a goal orientation is attributed to
students who seek not to perform worse than their peers (i.e., to demonstrate that they are no worse than
their peers). A performance approach orientation is attributable to students who seck to demonstrate their
competence by out-performing their peer group. Students with mastery approach goals tend to seek to
develop competency for a learning task by achieving at levels above their past performance or by setting
other criteria for judging increased or developing mastery (Ames, 1992; Elliot, 1999).

Learner self-efficacy, or beliefs a learner has about his or her abilities in performing in a particular
domain or task may also play a role for setting goals, self-regulation, and other factors important for
learning (Bandura, 1994). Learners with high self-efficacy, for example, may be more willing to set more
difficult or less easily attainable goals that require working through difficult tasks. Self-efficacy is also
related to persistence and better performance on learning tasks (Bandura, 1997).

"' We here provide a brief summary of the explication of these non-cognitive factors found in Fancsali et al. (in
press).
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Self-report questionnaires, especially those given before or after a particular learning task, are frequently
used measure goal orientation and self-efficacy. However, several authors note that factors like goal
orientation can change as learners progress in a learning experience or over longer periods of instructional
time (e.g., an academic year) (Richardson, 2004; Fryer & Elliot, 2007; Muis & Edwards, 2009). A
propos, we consider work that takes such differences in measurement grain size into account. Later, we
consider the possibility of “online” measures (e.g., log traces from ITSs) of such non-cognitive factors.

Grain size

Given the possibly dynamic nature of non-cognitive factors, including goal orientation, Bernacki, Nokes-
Malach & Aleven (2013) raise concerns for the granularity at which factors like goal orientation are
measured in conjunction with use of ITSs like CT. Beyond reliable changes in learners’ goal orientation
from unit to unit of CT instruction found by Bernacki, Nokes-Malach & Aleven (2012), the same authors
also found that domain-level measures of goal orientation (e.g., for the mathematics domain) versus unit-
level measures of goal orientation (e.g., for CT units of instruction) have different levels of association
with various behaviors, which provides for the possibility that different measurement grain sizes are
providing different information in possibly important ways (Bernacki, Nokes-Malach & Aleven, 2013).
We report recent work due to Fancsali et al. (submitted) that provides a linear structural equation model
relating data collected on self-efficacy at the unit- and domain-levels and learners’ goal orientations. This
work suggests that the move from self-report questionnaires to relatively simple log traces to measure
achievement goals, including counts of hints and glossary access in the CT, is likely more nuanced than
suggested by recent work of Otieno, Schwonke, Salden & Renkl (2013). Before describing this work, we
briefly consider one facet of personalization based on non-cognitive factors that provides the basis of the
second study we report.

Student preferences, interest area personalization, and grain size

Computer-based ITSs like CT can provide functionality that allows for context personalization, roughly
aligning instructional content to interests of an individual learner (Anand & Ross, 1987; Cordova &
Lepper, 1996; Walkington, 2013). For instance, Carnegie Learning’s MATHia product, an ITS for middle
school mathematics based on CT, provides for mathematics word problems to be tailored to specific
interest areas of learners for domains outside of the classroom (e.g., “sports & fitness”) as well as based
on student-entered names of their favorite classmates or friends. Personalizing instruction based on both
of these non-cognitive factors (i.e., problem content and names) has been demonstrated effective by
previous experiments (Anand & Ross, 1987; Cordova & Lepper, 1996; Ku & Sullivan, 2002). With
respect to CT, research using an experimental version of this ITS finds that personalizing mathematics
word problems based on student interest areas improves learning outcomes (i.c., performance) at the
problem-level, especially on problems with a relatively high reading level that involve difficult KCs
(Walkington, 2013). One posited mechanism at the level of KCs is that personalization improves stu-
dents’ ability to symbolically represent word problems at a higher reading level. However, as we describe
later, at a higher level of granularity, when we have considered the aggregate association of “honoring”
student preferences with learning outcomes, our results are less clear (Fancsali & Ritter, 2014; Ritter,
Sinatra & Fancsali, in press).
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Goal Orientation, Self-Efficacy, Behavior, and Learning

To better understand, among other things, the proposal of Otieno, Schwonke, Salden & Renkl (2013) that
“online” measures from ITS log data, simple counts of hints requested and glossary use, be used to assess
achievement goals or goal orientation (performance approach and mastery approach goals, respectively),
Fancsali et al. (in press) learned qualitative causal structure, using data-driven procedures based on
conditional independence tests and background knowledge (Spirtes, Glymour & Scheines, 2000), to
specify a linear structural equation model (estimated and illustrated as Figure 27) over features represent-
ing goal orientation, self-efficacy, math grades (pre/post), and process data from CT.
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Figure 22. Estimated linear structural equation model reported by Fancsali, Bernacki, Nokes-Malach, Ritter
& Yudelson (submitted), including standardized path coefficients.

Data were collected for 273 pre-algebra, algebra, and geometry students using the CT during an experi-
ment run by Matthew Bernacki, Timothy Nokes-Malach, and Vincent Aleven in a school district in
western Pennsylvania to investigate issues of grain-size and measurement of performance goals and self-
efficacy. Self-report survey items’ for achievement goals were original items from subscales for perfor-
mance approach, performance avoidance, and mastery approach on the Achievement Goals Questionnaire
— Revised (Elliot & Murayama, 2008). The study designers crafted self-efficacy survey items according to
guidance provided by Bandura (2006). Domain-level survey items (i.e., with respect to learner’s feeling
about mathematics) were administered within the CT software at the beginning of the school year, while
unit-level items (with language adapted to refer to the particular CT unit of instruction students had just
completed) were presented after every other unit of instruction (alternating with unit-level self-efficacy
items).

? Their reported model fits the data well according to the appropriate chi-square statistical test for such a model
comparing its implied covariance matrix to the observed covariance matrix (x*(43) = 49.19, p = 0.239) (Bollen,
1989).

? For complete details of survey items, see Fancsali et al. (in press).
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While the proposal of Otieno, Schwonke, Salden & Renkl would have us count Glossary Use as a
measure of mastery approach, we find that it is weakly linked only to domain-level learner self-efficacy
(i.e., for mathematics); the model of Figure 2 implies that conditional on Self-Efficacy for Mathematics,
Glossary Use is independent of all other variables included in the model. Similarly, Hint Requests in Unit,
a proposed measure of performance approach goal orientation, is strongly correlated with Errors Made on
Problems in Unit, which in turn is only weakly linked to Self-Efficacy for Unit Topic (i.c., unit-level self-
efficacy). The model is inconsistent with any strong link between hint use and achievement goals.

The model posits that three variables are directly linked to Math Grade: Prior Math Grade, Self-Efficacy
for Unit Topic, and Performance Avoidance Goals for Mathematics. Notably, this set of variables
includes both a unit-level and domain-level variable, and we see that these different levels of granularity
do provide different information about behavior in CT. Direct links in this model, and especially the weak
correlation of Performance Avoidance Goals for Mathematics with Math Grade should be interpreted
cautiously, as the algorithm used to infer the structure of the model in Figure 2 assumes there are no
unmeasured common causes of measured variables, and this assumption is unlikely to obtain in this
application domain (i.e., the adage to not confuse correlation and causation is operative). Nevertheless,
the model is useful for providing basic structural relationships from correlational data and providing
information about what relationships are not consistent with observed data. Further, the pattern of high
correlations among goal orientation variables is consistent with previous literature positing a “goal
complex” (Barron & Harackiewicz, 2001; Senko, Hulleman & Harackiewicz, 2011); one explanation of
such a “complex” would include one or more latent variables representing some more complex factor(s).
We return to the problem of developing online measures for important non-cognitive factors like goal
orientation and self-efficacy as well as issues of grain size and implications for GIFT in the discussion
section.

“Honoring” Student Preferences and Learning

While previous CT experiments had demonstrated improved problem-level learning outcomes from
personalizing mathematics word problems based on student interest areas, less clear was whether “honor-
ing” interest area preferences, in the aggregate, is associated with better performance in an ITS like CT.
To begin considering this question, we analyzed observational data from Carnegie Learning’s MATHia
ITS, which is based on CT (Fancsali & Ritter, 2014).* While MATHia allows students to (optionally) rate
four interest areas with one to five “stars,” (cf. Figure 3) we found, in a sample of 104,197 learners,
62,168 learners (59.7%) set interest areas, but 16,003 learners (25.7% of those who set interest areas)
provided the same rating to all interest areas.

Consequently, we employ a notion of strong student preferences according to which a student has strong
preferences if (and only if) they rate at least one interest area with five stars and at least one area with one
star (or leave at least one area un-rated). From a smaller sample of 1,230 learners (from eight randomly
selected schools that completed at least five instructional sections that contain preference-tailored prob-
lems and upon whom our detailed analysis focused), we found that 518 students had strong preferences

* Results reported in this section are described in detail by Fancsali & Ritter (2014).
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according to this definition. We then calculated the proportion of problems presented to each of these
students (in sections that contained preference-tailored word problems) that corresponded to their highly
rated interest area as a measure of the extent to which their preferences were “honored.”

What do you think of these topics? Choose 4 of your favorite classmates.

Their names will show up in certain math problems

SPORTS & FITNESS

Stephen

MONEY & BUSINESS

Michael

ARTS & MUSIC

ENVIRONMENT & NATURE

Nicole

Figure 23. MATHia’s preference dashboard

We found that the probabilistic provision of preference-tailored problems led to a relatively restricted
range of proportions of preference-honoring per student, with the majority of students seeing somewhere
between 10%—40% of problems in preference-tailoring sections that corresponded to their interests. Given
that MATHia does not explicitly signal to students that problems have been provisioned according to their
preferences, there is some question as to whether students generally realize that the software is adapting
to their interests. Further, we considered correlations of proportion of preference-honoring problems to
four process variables found in past work to be predictive of standardized test scores (Ritter, Joshi,
Fancsali & Nixon, 2013): assistance per problem (i.e., number of hints requested & errors committed per
problem), number of MATHia sections encountered, number of sections completed per hour (i.e., roughly
efficiency), and amount of time logged into MATHia.

While three of four correlations with proportion of preference-honoring problems were significant (at the
a = 0.05 level), no correlation had an absolute value greater than 0.14, and it is unclear that there is any
substantive use to be made of such weak, aggregate correlations. Further, the directions of these correla-
tions imply a slight negative relationship between preference honoring and MATHia performance, but it
is unclear whether this also has any substantive significance. Interestingly, we found that there were
statistically significant differences (at the o = 0.05 level) between strong and weak preference students, as
strong preference students worked through MATHia material more efficiently (i.e., greater sections
completed per hour) (Welch two-sided, two sample p = 0.01, Cohen’s d = 0.2)’, and students who merely
set preferences require (statistically) significantly less assistance per problem than those who do not set

’> We omit mean values since Fancsali & Ritter (2014) normalize and transform process variables, following Ritter,
Joshi, Fancsali & Nixon (2013) in such a way that mean values would be relatively un-interpretable without more
significant explanation, which we omit for brevity.
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preferences (p = 0.03, d = -0.12). Perhaps even more interestingly, students who set names of
friends/classmates in MATHia outperformed those who did not set such names on all four process
variable measures, requiring less assistance per problem (p < 0.001, d = -0.27) and encountering more
MATHia sections (p =0.009, d = 0.16) while working more efficiently (p < 0.001, d = 0.12) in less time
(p<0.001, d =-0.23).

These results raise questions about the nature of the factor(s) (either cognitive or non-cognitive) for which
use of the preference dashboard is serving as a proxy; possibilities include conscientiousness or attentive-
ness to the MATHia environment, but since total login time is not significantly different in two out of the
three comparisons, possible notions of engagement for which dashboard use might serve as a proxy may
be constrained. It is also possible that students may simply appreciate the opportunity to set preferences to
which the ITS responds and adapts. Future versions of MATHia should make more explicit the prevision
of problems to students based on their interests, while also honoring preferences overall more frequently
and with greater variability to avoid the restricted range pitfall that we have discovered in our current
implementation.

Discussion and Implications for GIFT

One immediate implication, if our hypothesis about learners’ appreciation of an instructional system’s
personalization to their interest areas or adaptation based on other non-cognitive factors is true, is that
GIFT might also benefit from providing means by which training applications can not only provide
adaptive instruction but also make explicit (at least aspects of) the decision making process that led GIFT
to “choose” a particular adaptive, instructional strategy. We now discuss several other implications
derived from the above presentation of recent research on specific non-cognitive factors in practice.

Online measures

We agree with the argument of Otieno, Schwonke, Salden & Renkl (2013) that developing appropriate
online measures of non-cognitive and other factors is important to improving the state of the art of ITS
research because surveys tend to be (at least) time-consuming while providing only noisy measures of
intended phenomena. One implication for an intelligent tutoring architecture, then, is that the tutor may,
in addition to its role as a source of instruction, play a role as a “sensor” for various characteristics and
states. As noted by Fancsali, Ritter, Stamper & Nixon (2013), developments in sensor-free, data-driven
“detectors” (e.g., Baker 2007; Baker & de Carvalho 2008) of both relatively complex behavior and
affective states might be extended to factors like achievement goals, providing important avenues for
future research into data-driven, online methods for making inferences about such phenomena.

Transferable inferences and grain size

We have provided concrete examples of (still unresolved) issues raised by Fancsali, Ritter, Stamper &
Nixon (2013) in the ever-growing body of research on ITSs. Differing levels of granularity in measure-
ment and analysis provide disparate but possibly important information about learners* interactions with
ITSs like CT, and the effects of some types of personalization (e.g., preference-tailored word problems)
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may only be seen at the fine-grained level of individual problems, based upon their composition in terms
of KCs.

While much of the work we have presented and our previous recommendations describing the integration
of HPIT and GIFT (Fancsali, Ritter, Stamper & Nixon, 2013) has focused on relatively fine-grained
measurements and inferences necessary for a particular ITS or instructional system to provide appropri-
ately adaptive educational experiences, relatively coarse-grained assessments and inferences may be most
appropriate for GIFT to provide rich learner models for multiple instructional systems or training applica-
tions. However, it is not, at this stage, clear how, for example, non-cognitive (and meta-cognitive) factors
like achievement goals or affective states like boredom in an ITS for mathematics might transfer to other
training applications (when even factors like achievement goals, as noted above, have variability at
different grain sizes during instruction that can provide important information about learning outcomes).
It isn’t necessarily true that, for example, detection of a student as bored in one tutor has any relevance to
another tutor; perhaps the second tutor is more exciting to the student. For this reason, it makes sense to
consider communicating not just conclusions (e.g., “boredom”) to the Learner module but also some of
the evidence leading to that conclusion. A subsequent system or training application, coordinating with
the Pedagogical module and Domain module, could then judge whether the conclusion is likely to obtain,
given evidence.

Contrast these factors with what could plausibly be transferable assessments of other factors like learner
interest areas, assuming such factors are relatively stable over time. Nevertheless, a great deal of factor-
specific research across ITS platform, educational games, simulation-based training environments, and
others is required to determine those factors (and at what level of granularity) that will allow for transfer-
able inferences across training applications and at what level of granularity these factors are sufficiently
“domain-independent” to be tracked by GIFT’s Learner module. The type of factor-specific research
described above (though only in the CT and MATHia platforms) and also pursued by a wide variety of
researchers in the educational data mining community and elsewhere is a step in the right direction (cf.
the brief review for ITSs like CT in Fancsali, Ritter, Stamper & Nixon, 2013), but determining how
findings transfer across domains and training applications is vital.

This problem is not limited to non-cognitive factors: Even certain cognitive factors like low-level skill
models may not transfer from one ITS for mathematics to another. For example, the types of errors that
students can make in a desktop version of the CT’s equation solver units are different than those that can
occur in a tablet-based version of these units we are currently implementing as a part of the HPIT project
that will use handwriting recognition. This has important implications for the types of competencies
and/or skills that can be usefully tracked by the Learner module and the Persistent Learner Model in
GIFT. Finding appropriate levels of granularity (i.e., grain sizes) for various factors that must be meas-
ured, assessed, and tracked by systems with ambitious goals like HPIT and GIFT is paramount to deliver-
ing intelligent tutoring in a variety of educational and training contexts.
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