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Abstract: 
 

Educational Data Mining techniques generally rely on complete sets of student data 
for analysis.  In order to limit the number of students that have to be removed due to 
missing data, various methods have often been used to fill in these missing data points.  
We propose a novel method utilizing a Complex Adaptive System to predicatively 
insert these missing data.  This system compares very favorably to other commonly 
used algorithms, and it is generally more flexible and scalable in approach.  What’s 
more, the CAS can output results in real-time, and can quickly adapt to newly added 
data.   We present our results of comparison between a CAS and other common 
methods of Predictive Data Insertion on a set of real student data, and discuss some of 
the considerations when implementing a CAS. 
 

1 Introduction 
 
Adding intelligent tutoring capabilities to an e-learning system will allow the system to adapt 
to an individual student’s needs. These adaptive tutoring capabilities have been shown to be 
effective in increasing student outcomes [3,5], but time consuming to implement due to the 
complex cognitive modeling required to produce such systems.  This research is part of an 
effort to ease the time to create these cognitive models by using Educational Data Mining 
(EDM) techniques to automatically generate them[7,8].  Some of the most effective EDM 
algorithms require complete data sets to generate results [1].  In a true e-learning course that 
runs over an entire semester it is likely that many students will be missing some data such as a 
missed homework or quiz.  While it is common practice in EDM to just remove the students 
with missing data from the analysis, this presents a problem when analyzing an entire 
semester where 20% or more of the students may have missed something.  Other techniques 
such as Zero-Fill or simple mean have been used, but they present problems with skewed 
results.  More advanced techniques such as K-Means clustering are more effective, but scale 
poorly with large datasets that change often since they must be run every time data changes.  
We propose a novel technique utilizing a Complex Adaptive System (CAS) to predict the 
missing student data and compare the results to several other methods including the traditional 
K-means data mining technique.      
 

2 Background and Related Work 
 
Within the EDM community, the simple removal of rows with missing data has been common 
for algorithms that require a complete data set.  This practice becomes problematic when 
larger amounts of data are missing, since the students missing data may represent a unique 
group that should be recognized.  Predicting missing data is a useful exercise in many data-
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mining situations, and there have been many techniques applied to the problem.  In this study 
we look at several universal methods and compare them to our CAS approach.  The data for 
this study, which is fully described in the experiment section, consists of binary data that 
corresponds to correct (1) and incorrect (0) answers. 

2.1 Zero-Fill 
 
Aside from simply removing the entire row of data with missing values, the Zero-Fill method 
is the simplest method of dealing with missing data.  This method is often used when an 
educator gives a student a zero for missed work.  Obviously, this method automatically 
assumes the student has missed the question which may not be the case if the student actually 
had the opportunity to answer the question.  Of all the methods studied, the Zero-Fill has the 
greatest potential to negatively skew the results. 

2.2 Simple Mean 
 
The Simple Mean method uses the average response from all students for a particular question 
and all questions across a particular person to predict the value of a missing person/question 
pair.. In the case of binary data a value less that 0.5 results in a zero, and equal to or above 0.5 
returns a value of 1.   

2.3 K-Means Clustering 
 
A K-Means clustering algorithm is a partitional clustering technique that can be used to 
predict values by creating a number of clusters, and using the closest cluster for prediction [9].  
In order to perform the K-Means clustering, the number of clusters must be predetermined at 
the start of the run.  The steps to the algorithm are as follows: 

1. Place K points into the space represented by the objects that are being clustered. 
These points represent initial group centroids. 

2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation 
of the objects into groups from which the metric to be minimized can be calculated. 

Although the algorithm works surprisingly well, there are some known issues.  First, the 
location of the starting points has a great effect on the solution.  Usually, points are randomly 
placed which can sometimes lead to items too close together.  To mitigate this issue, 
implementations of the K-Means clustering will run the algorithm multiple times using 
different starting points.  Second the distance measure may not be relevant.  Euclidian 
distance or Manhattan distance are the mostly widely used distance functions, but care must 
be taken when calculating these values over multiple attributes that may or may not be scaled 
in the same way.  Finally, there is the issue with selecting K, the number of groups to cluster.  
There are no known ways to find the optimal number of clusters.  Generally, researchers will 
start with a lower K, then work their way up to more clusters until some threshold of 
improvement gain is reached.  This method is time consuming and can also lead to overfitting 
of the data. 
 



Conference ICBL2007                                                                May 07 - 09, 2007 Florianopolis, Brazil 
 

3(7) 

2.4 Complex Adaptive Systems 
 
Complex Adaptive Systems are a specialized form of a Multi-Agent System (MAS).  In a 
CAS, the agents are generally less complex, more homogenous, and greater in number than a 
traditional MAS[10].  Each agent in a CAS has only limited, local knowledge of the 
‘landscape’ of the large dataset.  The agents communicate with other agents at random to 
acquire this local knowledge.  The emergent property of the system – that is, the predictive 
power of the system as a whole – is derived from aggregating each agent’s local knowledge, 
and the agents themselves adapt during the training period based on their contribution to both 
positive and negative predictions[4,6]. 
 
In terms of data-mining and Predictive Data Insertion, a CAS derives its usefulness from the 
fact that after the training period is complete, new data can be added easily to the dataset.  
This flexibility ensures that the data insertion process on the new data can occur in real-time 
as the data is added, rather than necessitating performing an analysis on the entire data set 
from scratch. 
 
What’s more, a CAS system provides an extremely useful framework for analyzing large 
datasets as the shear volume of data increases.  If, instead of a few hundred entries along each 
axis of the matrix, a database contained in the range of thousands or millions of columns and 
rows, then traditional methods of correlating the data can quickly become overwhelmed.  In a 
CAS, however, each agent continually polls other agents at random, and preserves a list of 
those that would be the most useful in predicting missing data points.  The list can be used to 
make predictions in real time even as the agent continues to poll other members of the CAS.  
In this way, users of the data set can not only get a “best guess” at virtually anytime, but can 
also judge the relative usefulness of allowing the agents to continue their searches, in terms of 
the computing power needed vs. the increase in accuracy. 
 

3 Experiment 

3.1 Data  
 
The data used for the study was drawn from a random set of available student data consisting 
of 219 students answering 250 questions.  For the purpose of training, complete data was used 
to produce a student data matrix. Then 10% of the known data points were removed from the 
matrix and predictions were made.  The removal of random data points was done five separate 
times, so that five individual trials could be performed for each data-insertion method.  The 
predictions for each trial were compared to the actual values and the percentage of correct 
predictions was calculated.  The mean and standard deviation of the results of all the trials for 
each method are included in the graph of results. 

3.2 Setup 
 
The Zero-Fill and Simple Mean methods were evaluated using simple java programs.  The K-
Means clustering was performed using the open source Cluster 3.0 software, which is an 
enhanced version of the original Cluster software developed at Stanford University [2].  The 
CAS software was modeled with Net Logo software and then implemented in java.  The same 
data was run through each of the methods and the results were compared. 
 
In terms of a CAS, our system used the students as “agents;” each agent polled a certain 
number of other agents at random and used a simple calculation to determine how close each 
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was to the other, in terms of how well their individual answers matched across all the 
questions.  Each agent kept and continually updated a list of five “friends” it would use to 
later make the predictions for its own missing data points.  The maximum number of agents 
polled was varied between 20 and 500, and the accuracy was recorded for each level. 
 
It’s important to note that the choice of students-as-agent – although intuitive – is not 
necessarily the only was to implement a CAS algorithm.  The questions themselves could also 
be used as agents, and they could individually determine other questions that track well and 
would be used as predictors of missing data.  Alternatively, both concepts of agents could be 
used in tangent, whereby each student-as-agent keeps a separate list of “friends” for each of a 
few collections of correlated questions, as determined by the questions-as-agents. 
 
The choices of CAS implementation should be carefully considered.  The inherent flexibility 
of the system is generally advantageous in many regards; but if used improperly, it can lead to 
overfitting of the data, in which case the predictive power of the system would be seriously 
degraded. 
 

4 Results and Discussion 
 
We compared our CAS’s predictive data insertion technique to both the K-Means clustering 
algorithm and simple, randomly generated data insertions.  The K-Means algorithm is a 
commonly used technique for this type of process, and is therefore a good model of 
comparison when considering the benefit of our method.  The randomly generated data gives 
a baseline of comparison, and a simple formula was used to measure the error rate across all 
the inserted (predicted) data and their true values.  A percentage of correctly inserted data was 
then used to compare each of the four methods considered in this work. 
 
During the training period, the CAS was run so that each agent polled a number of other 
agents at random, and kept a list of the five who were closest in agreement across all the 
questions.  For each of the five sets of data with 10% of the datapoints randomly removed, 
separate trials were performed where the number of other agents polled was varied.  
Experiments were run where the agents polled 40, 80, 120, 160, 200, 300, 400, and 500 other 
agents.  Of course, the agents chosen for comparison are done so at random; therefore, 
redundant instances could occur, particularly where the number of agents polled at random 
exceeds the number of students in the dataset.  The random nature of choosing other agents 
was preserved on purpose, in keeping with the spirit of non-complex agents interacting within 
the system.  Depending on the particular application of a CAS, it may be more beneficial to 
ignore agents who have already been asked.  The cost of preserving a list of contacts should 
be weighed against the cost of performing the comparison again. 
 
The results for each trial are shown in the following table.  The CAS system results are for 
200 agents polled at random; other levels of polling will be compared and discussed in the 
next section.   
 

Method Trial 1 Trial 2  Trial 3 Trial 4 Trial 5 Mean 
Std 
Deviation 

Zero-Fill 0.7737 0.7734 0.7715 0.7781 0.7728 0.7739 0.0025 
Simple Mean 0.2019 0.2043 0.2054 0.2014 0.2070 0.2040 0.0024 
Nearest 
Neighbor 0.1542 0.1691 0.1623 0.1723 0.1639 

  
0.1644 

  
0.0069 

K-Means 0.1529 0.1552 0.1568 0.1498 0.1576 0.1545 0.0032 
CAS 0.1466 0.1576 0.1525 0.1498 0.1552 0.1523 0.0043 
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The CAS system performed slightly better than the K-Means algorithm at the 200 level.  (It 
also performed slightly better at the 160 level, and slightly worse at the level of 120 agents 
polled at random, as seen in the next chart.)  The CAS, Nearest Neighbor, and the K-Means 
algorithms were all more accurate for inserting missing data than the Simple Mean and the 
Zero-Fill methods. 
 
As expected, the Zero-Fill method performed abysmally.  Given that students in this dataset 
tend to get a majority of questions correct, a One-Fill method would perform much better, at 
about a 23% error rate.  However, the Zero-Fill method was included to highlight the inherent 
inaccuracies of not using any of the available information to fill in missing datapoints.  Such a 
method – while preserving the ability to analyze partially complete entries in a database – 
may, in fact, artificially skew the results of that analysis in unpredictable ways. 

4.2 Improvements Over Time 
 
The CAS method performed well – better than the Simple Means – even at the level of only 
40 agents polled.  This is an indication of the usefulness of the algorithm even at a small level 
of interaction among agents.  Below is the table showing the increase in accuracy over time. 
 

Polling 
Level Trial 1 Trial 2  Trial 3 Trial 4 Trial 5 Mean 

Std 
Deviation 

40 0.1779 0.1847 0.1868 0.1806 0.1829 0.1826 0.0035 
80 0.1651 0.1693 0.1576 0.1638 0.1689 0.1649 0.0047 
120 0.1607 0.1605 0.1563 0.1585 0.1604 0.1593 0.0019 
160 0.1479 0.1547 0.1540 0.1516 0.1553 0.1527 0.0030 
200 0.1477 0.1530 0.1516 0.1487 0.1516 0.1505 0.0022 
300 0.1463 0.1512 0.1472 0.1491 0.1513 0.1490 0.0023 
400 0.1425 0.1530 0.1459 0.1500 0.1488 0.1480 0.0040 
500 0.1434 0.1496 0.1452 0.1478 0.1507 0.1473 0.0030 

 
 
As expected, the CAS system improved its results by continually polling more and more 
agents, which increased the likelihood that the preserved list of “friends” was closer in 
agreement to the polling agent.  However, the amount of improvement decreased 
substantially, so that there was little gain, for example, in doubling the number of agents 
polled from 200 to 400. 
 
Since a CAS can produce results at any point in the agents’ interaction, the amount of polling 
can be easily tailored to fit the needs of a particular dataset.  Improvements can be tracked as 
the algorithm continues and the agents update and adapt to new information.  What’s more, 
the amount of improvement can be easily assessed, so that decisions about how long to allow 
the algorithm to run can be made with that information in mind. 
 
In the case of extremely large datasets, improvements may very well be ongoing as the 
algorithm runs for days, or even weeks.  However, information can be extracted for 
preliminary analysis at any time while the polling process continues.  Also, new data that is 
added can be easily assessed using the current state of the agents, even as they improve based 
on this new information. 
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4.3 CAS as Nearest Neighbor 
 
The CAS used for this set of student data is essentially a “find good candidates for nearest 
neighbors” algorithm, but without the need to exhaustively compare every student to every 
other student.  Of course, a traditional “nearest-neighbor” algorithm – such as the one used in 
this study – only uses one “friend” to predict all the missing data for a particular student.  By 
using five friends who are all relatively close in agreement, the CAS system was able to 
generally perform better than the Nearest Neighbor algorithm.  What’s more, the results 
across the five trials varied less than Nearest Neighbor, indicating that a CAS may also be 
more consistent.  This is not surprising, since using five friends rather than one allows the 
CAS to better manage possible instances of an atypical data-point; there is information 
available from four other friends to counteract against such an outlier.   
 
Five friends were chosen as a reasonable balance of simplicity, accuracy, and stability.  This 
number, of course, should be chosen beforehand, or without input from the testing data to 
prevent a tendency to overfit.  Also, as previously discussed, a student-as-agent model could 
be coupled with a question-as-agent model, so that “nearest neighbors” for each student are 
defined in terms of one sub-set of questions, rather than across all the questions.  Again, the 
number of sub-sets – if used – should be limited; otherwise, overfitting could occur.   
 
In the case of extremely large datasets, the student-as-agent method could also use a 
statistically similar sub-set to train on, learning who the closest agents are without the need to 
look at all the questions for every interaction.  This particular idea is not novel, of course; 
however, as the CAS framework is ideally suited for a reasonable application of limiting the 
number of comparisons across people, it is also adaptable for limiting the number of questions 
considered, which helps address scalability issues of large datasets. 
 
One final note about the missing data used in these experiments: we did consider that real 
student data may have missing data points for various reasons, and that those reasons may be 
correlated.  In other words, there may be information in the pattern of missing data.  In our 
experiments, of course, the data was removed completely at random, and done so five 
separate times, in order to add confidence that the results reflected this approach.  The reason 
we chose this method is due to the fact that missing data often is not correlated in a 
meaningful way, or it is unknown what the pattern, if there is one, may mean.  Our CAS 
approach can be easily adjusted to account for these patterns if desired; therefore, we decided 
to base this study on a “pure” approach, as if the missing data points were due to simple, 
random corruption, or due to reasons that are unrelated to the analysis of the data set.  When 
adapting a CAS algorithm for Predictive Data Insertion, it is therefore beneficial to consider 
why some of the data is missing, and if any useful information may be derived from this. 
 

5 Conclusion and Future Work 
 
Although Complex Adaptive Systems have been used for prediction before, we have not seen 
any employed in the educational e-learning or EDM communities.  The power of this method 
comes from its ability to constantly run and improve over time.  We hope to continue our 
research by completing additional experiments with our system and apply additional learning 
criteria to our CAS.  The method we provided is extremely robust and adaptable.  Although 
binary data was used for the experiments in this study, multiple choice data would work 
equally well, and we plan to test this level of abstraction next. 
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