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Abstract.  The Hint Factory is a novel application of Markov decision 
processes (MDPs), a reinforcement learning technique, to automatically 
generate contextualized hints from past student data. We describe the process of 
adding the Hint Factory to an existing, non-adaptive, software program used to 
teach deductive logic in an undergraduate Philosophy course, and we report the 
initial results of a pilot study to test the hint generation capabilities in a real 
class setting. 
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1   Introduction 

Many students use computer aided instruction (CAI) to enhance their classroom 
learning, but most CAI lacks the ability to adapt to each individual student. Intelligent 
tutoring systems can provide adaptive instruction and have been shown to be effective 
[3] [6], but are not universally seen in CAI because they are difficult to create [12]. 
Our research is an attempt to make intelligent tutors more accessible by simplifying 
their creation using educational data mining and machine learning techniques. In 
particular, we seek a path for educators to add intelligent tutoring capabilities to 
existing CAI without significantly rewriting the existing software. 

The Hint Factory is a novel technique that uses a Markov decision process, created 
from past student data, to generate specific contextualized hints for students using 
CAI. In this paper, we describe the process of adding the Hint Factory to a software 
program used to teach deductive logic in an undergraduate Philosophy course, and we 
report the initial results of a pilot study to test the hint generation capabilities in a real 
class setting. 



2   Related Work 

The problem of offering individualized help and feedback is not unique to logic 
proofs. Through individual adaptation, intelligent tutoring systems (ITS) can have 
significant effects on learning, but take considerable time to construct [12]. 
Constraint-based tutors, which look for violations of problem constraints, require less 
time to construct and can be used for problems that may not be heavily procedural 
[11].  However, constraint-based tutors can only provide condition violation feedback, 
not goal-oriented feedback, which has been shown to be more effective [8]. 

Example-based authoring tools such as CTAT use demonstrated examples to learn 
ITS production rules [7]. In these tools, teachers work problems in what they predict 
to be frequent correct and incorrect approaches, and then annotate the learned rules 
with appropriate hints and feedback.  This system has also been used with data to 
build initial models for an ITS, in an approach called Bootstrapping Novice Data 
(BND) [9]. However, in both of these approaches, considerable time must still be 
spent in identifying student approaches and creating appropriate hints.   

Machine learning has also been used to improve tutoring systems.  In the 
ADVISOR tutor, machine learning was used to build student models that could help 
predict the amount of time students took to solve arithmetic problems, and to adapt 
instruction to minimize this time while meeting teacher-set instructional goals [1].  In 
the Logic-ITA tutor, student data was mined to create hints that warned students when 
they were likely to make mistakes using their current approach [10]. 

Similar to the goal of BND, we seek to use student data to directly create student 
models for an ITS. However, instead of feeding student behavior data into CTAT to 
build a production rule system, our method generates a Markov Decision Process 
(MDP) that represent all student approaches to a particular problem, and uses the 
MDP to directly to generate hints.  In [2], we used visualization tools to explore how 
to generate hints based on MDPs extracted from student data and verified that the 
rules extracted by the MDP conformed to expert-derived rules and generated buggy 
rules that surprised experts. In [5], we applied the technique to visualize student proof 
approaches to allow teachers to identify problem areas for students. In [2], we 
demonstrated the feasibility of this approach by extracting MDPs from four semesters 
of student solutions in a logic proof tutor, and calculated the probability that hints 
could be generated at any point in a given problem.  Our results indicated that 
extracted MDPs and our proposed hint-generating functions were able to provide 
hints over 80% of the time.  Our results also indicated that we can provide valuable 
tradeoffs between hint specificity and the amount of data used to create an MDP. 

Our method of automatic hint generation using previous student data reduces the 
expert knowledge needed to generate intelligent, context-dependent hints and 
feedback.  The system is capable of continued refinement as new data is provided. In 
this work, we demonstrate the feasibility of our hint generation approach through 
simulation experiments on existing student data.  Although our approach is currently 
only appropriate for generating hints for specific problems with existing prior data, 
we believe that machine learning applied to MDPs may be used to create automated 
rules and hints for new problems in the same domain. 



3   The Hint Factory 

The Hint Factory consists of two main parts, the MDP generator and the hint 
provider. The MDP generator is an offline process, but the hint provider must be 
attached programmatically into the CAI. In this experiment we inserted software 
hooks into the deductive logic tutor called Deep Thought [4]. 

3.1 The MDP Generator 

The MDP Generator is a process that is run against previous student data in order to 
generate a MDP of all student states that have been previously seen. In the MDP, each 
state is given a value based on how “good” the state is based on a given value 
function.  

A Markov decision process (MDP) is defined by its state set S, action set A, 
transition probabilities P, and a reward function R [13].  On executing action a in state 
s the probability of transitioning to state s’ is denoted P(s’ | s, a) and the expected 
reward associated with that transition is denoted R(s’| s, a).  For a particular point in a 
student’s proof, our method takes the current premises and the conclusion as the state, 
and the student’s input as the action.  Therefore, each proof attempt can be seen as a 
graph with a sequence of states (each describing the solution up to the current point), 
connected by actions. Specifically, a state is represented by the list of premises 
generated in the student attempt, and actions are the axioms (rules) used at each step. 

We combine all student solution graphs into a single graph, by taking the union of 
all states and actions, and mapping identical states to one another.  Once this graph is 
constructed, it represents all of the paths students have taken in working a proof.  
Typically, at this step reinforcement learning is used to find an optimal solution to the 
MDP.  For the experiments in this work, we set a large reward for the goal state (100) 
and penalties for incorrect states (10) and a cost for taking each action (1). Setting a 
non-zero cost on actions causes the MDP to penalize longer solutions (but we set this 
at 1/10 the cost of taking an incorrect step). We apply the value iteration 
reinforcement learning technique using a Bellman backup to assign reward values to 
all states in the MDP [13].  The equation for calculating values V(s) for each state s, 
where R(s) is the reward for the state, γ is the discount factor (set to 1), and Pa(s,s’) is 
the probability that action a will take state s to state s’ can be seen in equation 1. 

 

V(s) :=  R(s) +  γ max
a

 Pa (s,s') V(s')
s'

�   (1) 

 
For value iteration, V is calculated for each state until there is little change in the 
function over the entire state space.  Once this is complete, the optimal solution in the 
MDP corresponds to taking a greedy traversal approach in the MDP [2].  The reward 
values for each state then indicate how close to the goal a state is, while probabilities 
of each transition reveal the frequency of taking a certain action in a certain state. 

Each state in the MDP is given a state number, state description, a set of actions 
from that state with the next state that the action leads, and a value. The state 



description consists of the current premises and conclusions on the screen. From a 
MDP generated for a specific problem, a hint file is generated. The hint file consists 
of all of the problem states generated in the MDP which have hints that can be given 
to the student. This means all states that are not errors and have a subsequent path to 
the problem solution.  

3.2 Deep Thought 

Deep Thought [4] is a custom built system to provide Computer Aided Instruction 
(CAI) in the teaching of logic proofs. The interface is graphical and allows the 
students to visually connect premises and apply logic rules. One key feature of Deep 
Thought is the ability of the system to allow a student to work forward or backwards 
in the solving of a problem [4]. The Deep Thought program can be seen in Figure 1. 
The Deep Thought software has the ability to write out each step that a student makes 
to a log file. These log files have been compiled for several years now, and they 
contain a significant amount of data that will allow us to create MDPs for the hint 
generation. Deep Thought is written in Java and delivered to students via a web link. 
We have been given access to the complete source code. 

In order to add contextualized hints to Deep Thought we first needed to add a hint 
button. The hint button was added to the main form, but is invisible at start time and 
will only become available when a student loads a problem that has a hint file 
associated with it. The hint button can be seen in the lower right corner in figure 1. 
The button was given a bright yellow color when hints were available to make 
students aware they could use the button. When a new problem is selected from the 
options drop down, a hook was added that looks for a hint file associated with that 
problem. If a hint file is found the hint provider code loads the entire hint file into 
memory.  

3.3 The Hint Provider 

Once the student starts working on a problem with hints available, each student step 
makes a call to the hint provider which checks to see if the current student state exists. 
If the student clicks the hint button, the hint provider will get read in the current state 
information and verify that hints are available for that state. Then the possible known 
actions from the current state are evaluated by comparing the values of the subsequent 
state. The subsequent state with the highest value will be used to generate a hint 
sequence. 

A hint sequence consists of four types of hints that the hint provider will create. A 
hint sequence is derived as follows: 1) indicate a goal expression to derive, 2) indicate 
the rule to apply next, 3) indicate the premises where the rule can be used, and 4) a 
bottom-out hint combining 1-3. For the problem state seen in Figure 1, the hint 
sequence seen in Table 1 would be generated. Using the hint sequence, a student can 
click the hint button four times at a given state and get the next hint in the sequence. 



Table 1: Example hint sequence derived from example student solution 

 
 
 
 
 
  
 
 
Whenever the hint button is clicked the hint provider also writes out hint 

information to the student data log file. We track when the hint button was clicked, 
what hint was given, hint sequence number, and total hints given for the current 
problem. 

 

 
Fig. 1. The Deep Thought Interface, with problem 3-6 partially completed.  

4   Pilot Study 

Once the Hint Factory had been applied to the Deep Thought software, we proceeded 
to generate MDPs and hint files for several Deep Thought problems. Since the current 

Hint # Hint Text 
1 Try to derive not N working forward  
2 Highlight if not T then not N and not T to derive it 
3  Click on the rule Modus Ponens (MP)  
4 Highlight if not T then not N and not T and click on 

Modus Ponens (MP) to get not N 



semester was already under way, we chose four level 3 problems from Deep Thought 
and generated hint files. These problems were identified as 3-2, 3-5, 3-6, and 3-8. The 
student data used consisted of two semesters of data from previous classes that had 
completed the selected problems in Deep Thought. Table 2 shows the number of 
student attempts used to create the MDPs for each problem, the average length of the 
attempt with minimum and maximum lengths. The attempts used were hand validated 
and consisted of only completed proofs. 
 

Table 2: Data Used to Create MDPs 

 
Our main goal in the pilot study was to see how well the Hint Factory software 

worked in an actual class situation. We set up the system in such a way that if 
anything went wrong our software changes the instructor could remove the hints and 
go back to the original Deep Thought version quickly. Fortunately, the software 
worked well with no problems with the hint delivery.  

The current class spent two weeks working on the Deep Thought level 3 problems 
and the resulting hint button usage can be seen in Table 3. These attempts include 
both completed and partial attempts. The Hint Available % shows how often a hint 
was available when it was asked for by the student. Clearly, our ability to give hints 
when requested was very good considering the low number of student attempts that 
were used to create the original MDPs used in the hint files. These results validate our 
previous results in [2]. Further analysis of the hint data is under way and we plan to 
explore the overall hint usage among individual students.  From a high level view, we 
can see that some students used the hints frequently to the point of abusing them, 
while others never used hints.  

Table 3: Hint Usage for problems 

 
 

Problem 3-2 3-5 3-6 3-8 
Attempts 16 22 26 25 
Average Length 11.25 18.82 8.00 11.88 
Std Dev Length 4.01 12.39 5.87 3.10 
Min Length 7.00 10.00 4.00 7.00 
Max Length 18 58 30 19 

Problem 3-2 3-5 3-6 3-8 
Attempts 69 57 44 46 
Hint Button Hits 471 458 157 303 
Hint Available 431 432 150 286 
Hint Available % 91.51% 94.32% 95.54% 94.39% 
Average Hints  6.82 8.03 3.57 6.63 
Min Hints  0 0 0 0 
Max Hints 22 44 17 37 
Std Deviation 2.44 3.68 2.03 1.88 



5   Conclusions and Future Work 

Although our initial findings are promising, further analysis of the student data with 
hints needs to be done to draw conclusions about student learning.  We plan to 
compare error rates, proof length, and complete vs. partial attempts data from the hint 
data and previous semester data. As of this writing this analysis is not complete. 

This research represented the implementation and a pilot study for our hint 
generation method in an actual classroom setting. The main goals of the pilot study 
were to verify that the software would work in a class setting, to see if students would 
ask for hints, and verify that hints would be available when asked for by the student. 
The pilot study has shown that students will use the hints and our hint availability is 
high. Since the hints were only available for four of thirty problems used in the 
software, we hope to include more problems over the next several semesters. A 
survey of the students is planned for the end of the semester to gauge their feelings 
towards the hints. Further collection and analysis of the student data and hint data will 
be performed to test the overall effects of giving students hints. We also see the need 
for some talk alouds with students as they work with the hints. The data raised 
questions why some students avoided the hints, while others abused them. Our current 
setup allows the student to ask for unlimited hints. In future experiments limits to the 
number of hints will be added. 

We plan to create and implement different value functions for the MDP generator 
and perform experiments to see if certain students relate better to a different type of 
hint. In our next experiment, students will be split in to two groups of higher and 
lower performing students. These groups will then be given hints generated from 
different MDPs. We plan to use a optimal strategy, and an error avoidance strategy to 
see if the different groups perform better with one of the types of hints. 
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