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Abstract. The Hint Factory is an implementation of our novel method to 
automatically generate hints using past student data for a logic tutor. One 
disadvantage of the Hint Factory is the time needed to gather enough data on 
new problems in order to provide hints. In this paper we describe the use of 
expert sample solutions to “seed” the hint generation process. We show that just 
a few expert solutions give significant coverage (over 50%) for hints. This 
seeding method greatly speeds up the time needed to reliably generate hints. 
We discuss how this feature can be integrated into the Hint Factory and some 
potential pedagogical issues that the expert solutions introduce. 
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1   Introduction 

The goal of the Hint Factory is to make intelligent tutors more accessible by 
simplifying their creation using educational data mining and machine learning 
techniques. In particular, we seek a path for educators to add intelligent tutoring 
capabilities to existing computer aided instruction (CAI) without significantly 
rewriting the existing software. The Hint Factory is a novel technique that uses a 
Markov decision process (MDP), created from past student data, to generate specific 
contextualized hints for students using CAI. 

We seek to make our data-driven methods effective quickly. One criticism of data-
driven techniques is the amount of time it takes to achieve results for a new problem 
with no data. Although we have previously addressed this issue with a cold start 
analysis [1], this research provides an additional method to speed up hint giving 
capabilities. For this method, an expert (or experts) “seeds” the matrix by completing 
examples to new problems and using these examples to create the initial MDPs. The 
experiments presented here focus on how well hints can be provided from an initial 
expert seeding of the MDP. We hypothesized that hints derived from expert solutions 
could be used to provide hints in 50% of historical student solution steps. The expert 
time needed is quite low to achieve this level of hint coverage.  

Our primary research implementation of the Hint Factory has been in a tutor to 
teach deductive logic in Philosophy and discrete mathematics at the college level [5]. 



In addition to the seeding experiment, this analysis examines additional problems in 
the logic domain order to further validate our previous work [1]. The analysis of the 
additional logic problems resulted in similar hint coverage to the problem (NCSU 
Proof 1) previously studied. This confirms our belief that the method is robust and 
effective in the logic domain. 

2 Background and Related work 

Historically, the research and development of intelligent tutors have relied on subject 
area experts to provide the background knowledge to give hints and feedback. Both 
cognitive tutors and constraint based tutors rely on “rules” that experts create [9]. This 
is a time consuming process, and requires the experts to not only understand the 
subject material, but also to understand the underlying processes used to give help and 
feedback.  We believe that the development of intelligent tutors can be enhanced by 
using data collected from students solving problems. The amount of data being 
collected from CAI continues to grow at an exponential rate. Large data repositories 
like the PSLC DataShop have been created to store and analyze this data [7]. Data-
driven methods applied to such large data repositories can enable the rapid creation of 
new intelligent tutoring systems, making them accessible for many more students.  
 Others have used collected student data with machine learning to improve tutoring 
systems.  In the ADVISOR tutor, machine learning was used to build student models 
that could predict the amount of time students took to solve arithmetic problems, and 
to adapt instruction to minimize this time while meeting teacher-set instructional 
goals [4]. Student data has been used to build initial models for an ITS, in an 
approach called Bootstrapping Novice Data (BND) [10]. Although the BND approach 
saves time in entering example problems, it still requires expert instructors and 
programmers to create a tutor interface and annotate the extracted production rules 
with appropriate hints. Similar to the goal of BND, we seek to use student data to 
directly create student models for an ITS. However, instead of using student behavior 
data to build a production rule system, our method generates MDPs that represent all 
student approaches to a particular problem, and use these MDPs directly to generate 
hints. RomanTutor is a ITS developed to teach astronauts to operate a robot arm on 
the International Space Station [11]. This tutor uses sequential pattern mining (SPM) 
over collected data to find the best sequence of steps at any given point. In this ill-
defined domain, data mining has proved to be an effective way to provide feedback 
where the number of possible combinations would be too immense for experts to 
cover. SimStudent is an agent based tool for building student knowledge models by 
example [12]. SimStudent has been used with student log data to build a model that 
predicts student knowledge. 
 Our research using visualization tools to explore generated hints based on MDPs 
extracted from student data verified that the rules extracted by the MDP conformed to 
expert-derived rules and generated buggy rules that surprised experts [3]. Croy, 
Barnes, and Stamper applied the technique to visualize student proof approaches to 
allow teachers to identify problem areas for students. Barnes and Stamper 
demonstrated the feasibility of this approach by extracting MDPs from four semesters 



of student solutions in a logic proof tutor, and calculated the probability that hints 
could be generated at any point in a given problem [1].  Our results indicated that 
extracted MDPs and our proposed hint-generating functions were able to provide 
hints over 80% of the time.  The results also indicated that we can provide valuable 
tradeoffs between hint specificity and the amount of data used to create an MDP. The 
MDP method was successfully implemented into the Deep Thought logic tutor as part 
of the Hint Factory in a live classroom setting [2]. Fossati and colleagues have used 
the MDP method in the iList tutor used to teach linked lists and deliver “proactive 
feedback” based on previous student attempts [6]. 

One ITS authoring tool, CTAT, was given a feature to use demonstrated examples 
to learn ITS production rules [8]. In these tools, teachers work problems in what they 
predict to be frequent correct and incorrect approaches, and then annotate the learned 
rules with appropriate hints and feedback. In many ways this is similar to the seeding 
approach presented here, but in our approach the expert need not supply the hints. 
Additionally, the example tracing tutors will only have the knowledge that the expert 
has added, while our methods would allow the tutor to continue to improve as 
additional expert or student problem attempts are added to them model. Finally, our 
method computes a value for problem states automatically, and uses this value to 
make decisions on which path to suggest even when multiple choices are reasonable. 
This ability to differentiate between several good solutions based on the specific 
context of student’s current state remains the strong point of the Hint Factory. 

3 Markov decision processes to create student models 

The Hint Factory consists of the MDP generator and the hint provider. The MDP 
generator is an offline process that assigns values to the states that have occurred in 
student problem attempts. These values are then used by the hint provider to select the 
next “best” state at any point in the problem space.  

A Markov decision process (MDP) is defined by its state set S, action set A, 
transition probabilities T: S×A×S → [0,1], and a reward function R: S×A×S → ℜ 
[13]. The goal of using an MDP is to determine the best policy, or set of actions 
students have taken at each state s that maximize its expected cumulative utility (V-
value) which corresponds to solving the given problem. The expected cumulative 
value function can be calculated recursively using equation (1). For a particular point 
in a student’s logic proof, a state consists of the list of statements generated so far, 
and actions are the rules used at each step. Actions are directed arcs that connect 
consecutive states.  Therefore, each proof attempt can be seen as a graph with a 
sequence of states connected by actions.  

We combine all student solution graphs into a single graph, by taking the 
union of all states and actions, and mapping identical states to one another.  Once this 
graph is constructed, it represents all of the paths students have taken in working a 
proof. Next, value iteration is used to find an optimal solution to the MDP.  For the 
experiments in this work, we set a large reward for the goal state (100) and penalties 
for incorrect states (10) and a cost for taking each action (1), resulting in a bias toward 
short, correct solutions such as those an expert might derive. We apply value iteration 



using a Bellman backup to iteratively assign values V(s) to all states in the MDP until 
the values on the left and right sides of equation (1) converge [13]. The equation for 
calculating the expected reward values V(s) for following an optimal policy from state 
s is given in equation (1), where R(s,a) is the reward for taking action a from state s, 
and Pa(s, s′) is the probability that action a will take state s to state s′. Pa(s, s′)  is 
calculated by dividing the number of times action a is taken from state s to s′ by the 
total number of actions leaving state s. 
 

V (s)  :=  max
a

 R(s,a)  +  Pa (s, ′ s )  V ( ′ s )
′ s 
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Once value iteration is complete, the optimal solution in the MDP corresponds to 
taking an expert-like approach to solving the given problem, where from each state 
the best action to take is the one that leads to the next state with the highest expected 
reward value [2].   

4 Method 

We use historical data to estimate the availability of hints using the MDP and seeding 
approaches. We performed this experiment using student attempts at the Proof 
Tutorial problems 1-4, as given in Table 1, in the NC State University discrete math 
course from fall semesters 2003-2006. The givens are the premises that students will 
use to prove the conclusion in the tutorial. Before using the Proofs Tutorial as 
homework, students attend several lectures on propositional logic and complete fill-
in-the-blank proofs.  

Table 1. Description of Proofs Tutorial problems 1 through 4 

Problem Givens Conclusion 
1 If A then B, If C then D,  not(If A then D) B and not C 
2 If A then B, If not C then D, not B or not D If A then C 
3 If (B or A) then C If A then (If B then C) 
4 A or (If B then C), B or C, If C then A A 

 
We generated an MDP for each semester of data separately, and Table 2 shows the 

number of states generated and number of total moves generated from each problem 
during each of the four semesters. The number of states represents the number of 
unique steps that were seen over all problem attempts, while the number of moves 
represents all student steps or state-action pairs. The number of moves gives a more 
accurate reflection of class behavior, and comparing states to moves gives a notion of 
how much repetition occurs in the dataset. Note that problem 1 was used in the 
original validation experiments [1]. From the table, several clear trends can be seen. 
First, the total number of attempts, states, and moves are lower in the Fall 2005 and 
significantly lower in Fall 2006 semesters. Second, problem 4 has significantly fewer 



attempts in every semester when compared to the others. According to the course 
instructor, problem 4 is the hardest problem. The seeding data was provided by two 
subject area experts, who worked each problem several times, but for less than one 
hour per problem. An overview of their problem attempts is given in Table 3. 

Table 2. Semester data, including attempts, moves, and states in the MDP for each semester 

Problem Semester # Attempts MDP states # Moves 
1 f3 172 206 711 
1 f4 154 210 622 
1 f5 123 94 500 
1 f6 74 133 304 
2 f3 138 162 628 
2 f4 142 237 752 
2 f5 105 122 503 
2 f6 63 103 279 
3 f3 139 145 648 
3 f4 145 184 679 
3 f5 113 103 577 
3 f6 71 94 372 
4 f3 103 46 166 
4 f4 59 63 103 
4 f5 34 30 48 
4 f6 33 20 41 

 

Table 3. Expert example seeding attempts, moves, and states for each problem 

Problem # Attempts MDP states # Moves 
1 3 10 19 
2 4 12 27 
3 2 15 21 
4 3 8 20 

 
To verify our previous results for testing hint availability [1], we performed a 

cross-validation study, with each semester used as a test set while the remaining 
semesters are used in training sets for MDPs. Hints are available for a particular state 
in the test set if the MDP contains that state with a path to the goal state. We count 
these matching states for each move as “move matches.”  Table 4 shows the average 
percent move matches between each semester and the remaining combinations of 
training sets using one, two, and three semesters of data to construct MDPs. On 
average, one-semester source MDPs match 71.46% of the valid moves in a new 
semester of data. With two semesters of data the average move coverage reaches 
77.32% for a 5.86% marginal increase. Adding a third semester of data results in an 
average coverage of 79.57%, a 2.25% marginal increase over two semesters. All the 
individual problems show a similar curve where the marginal return decreases after 



each subsequent semester. For Problem 4 the total percentage of move matches is 
approximately 15-20% lower than the other problems, and this occurs since there are 
significantly fewer attempst on this more difficult problem.   

Table 4. Average % move matches across problems comparing test sets and MDPs 

Problem  1-sem. MDPs 2-sem. MDPs 3-sem. MDPs 
1 72.79% 79.57% 82.32% 
2 75.08% 80.58% 82.96% 
3 79.01% 83.35% 84.89% 
4 58.94% 65.77% 68.09% 

Average 71.46% 77.32% 79.57% 
 
Table 3 shows characteristics of the expert examples used for seeding the problem 

MDPs. Between two and four attempts were available for each of the problems and 
these attempts generated between 8 and 15 total states. Table 5 shows the results of 
comparing each semester of test data with the seeded MDPs and one-semester MDPs. 
Especially in problems 1 and 3, when compared to the semester data, the seeded MDP 
states were “high impact” states, which included the most used paths to solve the 
problems by the students. Comparing the unique state matches to move matches 
shows that although the seeded MDPs match only a small percentage of unique 
student problem states, they match a lot of the moves taken by students. It is 
interesting to note the move matches vary much wider than a semester of MDP data. 
This should be expected considering the small number of seeding attempts used. In 
fact, with further analysis of the individual problems we see for problems 1 and 3 
there are two common solutions, that correspond to the expert seeds, resulting in high 
move coverage percent rates (62.08% and 53.33% respectively), while problems 2 
and 4 have more than two common solutions, which results in much lower, but still 
promising move coverage considering the small number of expert seed attempts. 

Table 5. Average % unique state and move matches for seeded and 1-semester MDPs 

 Unique state matches Move matches 

Problem Seeded MDP 1-sem. MDPs Seeded MDP 1-sem MDPs 

1 6.22% 34.55% 62.08% 72.79% 

2 11.40% 34.60% 29.82% 75.08% 

3 7.69% 33.36% 53.33% 79.01% 

4 12.46% 23.45% 26.57% 58.94% 

Average 9.44% 31.49% 42.95% 71.46% 
 
 



5 Revisiting the “cold start” problem 

We previously explored how quickly an MDP can be used to provide hints to new 
students, or in other words, how long it takes to solve the cold start problem, for 
problem 1 [1]. In this his experiment we compare hint availability for incrementally 
constructed MDPs starting with no data to those starting with seed data. In both cases, 
hint availability is calculated for the current student attempt, and their states are then 
added to the MDP. For one trial, the method is given in Table 6. In this experiment, 
we calculate the hint availability (move matches) for each consecutive student with 
seeded and non-seeded MDPs. We repeat this process for 100,000 trials and plot the 
resulting hint availability curves for problem 3 in Figure 1.  The curves for problems 
1-4 were all similar, so we present only problem 3 here. Figure 1 shows that seeding 
shifts the initial starting point of hint availability from 0 to over 50%, giving a boost 
at the start. By 50 attempts the seeded set is just a few attempts ahead and by 100 
attempts the 2 graphs are the same.  This shows that seeding helps initial hint 
coverage, avoiding the steep wait for significant hint coverage when using 
incrementally constructed MDPs for hints. We note that in the initial boost, the seeded 
problems are covering “high impact” states, or those that are very frequent in the 
student data sets.  

Table 6. Method for one trial of the cold-start simulation. 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 50 100

Student Attempts Seeded Not Seeded

 

Figure 1. Percent hints available as attempts are added to the MDP, over 100,000 trials for 
Problem 3 

1. Let Test = {all 523 student attempts} 
2. Randomly choose and remove the next attempt a from the Test set.  
3. Add a’s states and recalculate the MDP. 
4. Randomly choose and remove the next attempt b from the Test set. 
5. Compute the number of matches between b and MDP. 
6. If Test is non-empty, then let a:=b and go to step 3.  Otherwise, stop. 



 
Table 7 shows the number of attempts needed to achieve hint percentage thresholds 

with and without seeding for each of problems 1-4. Again we see that the seeding of 
each problem gives an initial boost that fades over time as more student attempts are 
added, which confirms our hypothesis.  

Table 7. Number of attempts needed to achieve threshold % hints levels for seeded and un-
seeded MDPs constructed incrementally.  Note that for problems 1 and 3, 50% hint coverage 

was achieved with seeds alone. 

Problem  50% 55% 60% 65% 70% 75% 80% 85% 90% 
1 Not seeded 8 11 14 20 30 46 80 154 360 
1 Seeded seeds seeds 4 8 21 46 80 155 360 
2 Not seeded 9 15 24 36 59 88 149 286 * 
2 Seeded 2 3 16 22 46 80 146 286 * 
3 Not seeded 5 7 10 16 27 50 110 266 * 
3 Seeded seeds 1 3 8 20 48 110 266 * 
4 Not seeded 25 31 54 82 * * * * * 
4 Seeded 12 22 53 80 * * * * * 

(* means the method did not reach this percentage) 

6 Conclusions and future work 

The main contribution of this paper is to show how expert seeding can enhance the 
automatic generation of hints by reducing the amount of student data initially needed 
to effectively deliver hints. Although we believe that our data-driven method already 
ramps up quickly [1], seeding using expert examples enhances our ability to give 
hints. For the seeding problems 100% of all the seeded states appeared in each 
semester of data. Obviously, the educators know the most common solutions to the 
problems and by seeding the MDPs they can quickly get this data included to help 
jump-start the hint giving process. Additionally, the experiments presented here 
replicate and further validate our earlier work in solving the cold start problem.  

We do see a few issues with seeding. One issue with using experts to seed the 
MDP for hint generation is that experts may unintentionally miss a very important 
solution to the problem. Students who try to solve the problem in this way would not 
receive hints and therefore may believe that they are doing something wrong. This 
problem, however, exists in traditional intelligent tutors as well. Further, the solutions 
that the expert provides will likely become more popular, since students receiving 
hints will likely use similar approaches to the experts.  This is not necessarily a bad 
thing, but it could limit the ability of MDPs to provide broad coverage of the student 
solution space – since student solutions might be more limited if they make heavy use 
of seeded hints. Seeding would likely reinforce the expert solution for a long time to 
come even as additional data is acquired. To alleviate this problem the instructors can 
vary which problems receive hints so that clean data with no hints can be collected on 
every problem at some point.  Alternatively, as enough student attempts are added to 



the MDPs to generate hints, expert solutions could be removed from the data set to 
promote diversity in student answers.  The seeding approach is very similar to the 
Bootstrapping Novice Data discussed in the related work section, and we believe it 
can be useful in many data-driven methods for generating intelligent tutoring 
capabilities. 

In our current and future work, we are using machine learning methods to analyze 
our MDPs for problem structure and for generating new problems of similar 
difficulty. We are also building tools for teachers and researchers to visualize MDPs 
and allow teachers to write their own hints, and modify how the MDPs are used in 
generating hints. 
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