
Enhancing the Automatic Generation of Hints with
Expert Seeding

John Stamper1, Tiffany Barnes2, Marvin Croy3

Carnegie Mellon University, Human-Computer Interaction Institute, Pittsburgh, PA1

University of North Carolina at Charlotte, Department of Computer Science, Charlotte, NC2
University of North Carolina at Charlotte, Department of Philosophy, Charlotte, NC3

john@stamper.org1, tiffany.barnes@gmail.com2, mjcroy@uncc.edu3

Abstract. The Hint Factory is an implementation of our novel method to
automatically generate hints using past student data for a logic tutor. One
disadvantage of the Hint Factory is the time needed to gather enough data on
new problems in order to provide hints. In this paper we describe the use of
expert sample solutions to “seed” the hint generation process. We show that just
a few expert solutions give significant coverage (over 50%) for hints. This
seeding method greatly speeds up the time needed to reliably generate hints.
We discuss how this feature can be integrated into the Hint Factory and some
potential pedagogical issues that the expert solutions introduce.

Key Words: Educational data mining, Markov decision process

1 Introduction

The goal of the Hint Factory is to make intelligent tutors more accessible by
simplifying their creation using educational data mining and machine learning
techniques. In particular, we seek a path for educators to add intelligent tutoring
capabilities to existing computer aided instruction (CAI) without significantly
rewriting the existing software. The Hint Factory is a novel technique that uses a
Markov decision process (MDP), created from past student data, to generate specific
contextualized hints for students using CAI.

We seek to make our data-driven methods effective quickly. One criticism of data-
driven techniques is the amount of time it takes to achieve results for a new problem
with no data. Although we have previously addressed this issue with a cold start
analysis [1], this research provides an additional method to speed up hint giving
capabilities. For this method, an expert (or experts) “seeds” the matrix by completing
examples to new problems and using these examples to create the initial MDPs. The
experiments presented here focus on how well hints can be provided from an initial
expert seeding of the MDP. We hypothesized that hints derived from expert solutions
could be used to provide hints in 50% of historical student solution steps. The expert
time needed is quite low to achieve this level of hint coverage.

Our primary research implementation of the Hint Factory has been in a tutor to
teach deductive logic in Philosophy and discrete mathematics at the college level [5].

In addition to the seeding experiment, this analysis examines additional problems in
the logic domain order to further validate our previous work [1]. The analysis of the
additional logic problems resulted in similar hint coverage to the problem (NCSU
Proof 1) previously studied. This confirms our belief that the method is robust and
effective in the logic domain.

2 Background and Related work

Historically, the research and development of intelligent tutors have relied on subject
area experts to provide the background knowledge to give hints and feedback. Both
cognitive tutors and constraint based tutors rely on “rules” that experts create [9]. This
is a time consuming process, and requires the experts to not only understand the
subject material, but also to understand the underlying processes used to give help and
feedback. We believe that the development of intelligent tutors can be enhanced by
using data collected from students solving problems. The amount of data being
collected from CAI continues to grow at an exponential rate. Large data repositories
like the PSLC DataShop have been created to store and analyze this data [7]. Data-
driven methods applied to such large data repositories can enable the rapid creation of
new intelligent tutoring systems, making them accessible for many more students.
 Others have used collected student data with machine learning to improve tutoring
systems. In the ADVISOR tutor, machine learning was used to build student models
that could predict the amount of time students took to solve arithmetic problems, and
to adapt instruction to minimize this time while meeting teacher-set instructional
goals [4]. Student data has been used to build initial models for an ITS, in an
approach called Bootstrapping Novice Data (BND) [10]. Although the BND approach
saves time in entering example problems, it still requires expert instructors and
programmers to create a tutor interface and annotate the extracted production rules
with appropriate hints. Similar to the goal of BND, we seek to use student data to
directly create student models for an ITS. However, instead of using student behavior
data to build a production rule system, our method generates MDPs that represent all
student approaches to a particular problem, and use these MDPs directly to generate
hints. RomanTutor is a ITS developed to teach astronauts to operate a robot arm on
the International Space Station [11]. This tutor uses sequential pattern mining (SPM)
over collected data to find the best sequence of steps at any given point. In this ill-
defined domain, data mining has proved to be an effective way to provide feedback
where the number of possible combinations would be too immense for experts to
cover. SimStudent is an agent based tool for building student knowledge models by
example [12]. SimStudent has been used with student log data to build a model that
predicts student knowledge.
 Our research using visualization tools to explore generated hints based on MDPs
extracted from student data verified that the rules extracted by the MDP conformed to
expert-derived rules and generated buggy rules that surprised experts [3]. Croy,
Barnes, and Stamper applied the technique to visualize student proof approaches to
allow teachers to identify problem areas for students. Barnes and Stamper
demonstrated the feasibility of this approach by extracting MDPs from four semesters

of student solutions in a logic proof tutor, and calculated the probability that hints
could be generated at any point in a given problem [1]. Our results indicated that
extracted MDPs and our proposed hint-generating functions were able to provide
hints over 80% of the time. The results also indicated that we can provide valuable
tradeoffs between hint specificity and the amount of data used to create an MDP. The
MDP method was successfully implemented into the Deep Thought logic tutor as part
of the Hint Factory in a live classroom setting [2]. Fossati and colleagues have used
the MDP method in the iList tutor used to teach linked lists and deliver “proactive
feedback” based on previous student attempts [6].

One ITS authoring tool, CTAT, was given a feature to use demonstrated examples
to learn ITS production rules [8]. In these tools, teachers work problems in what they
predict to be frequent correct and incorrect approaches, and then annotate the learned
rules with appropriate hints and feedback. In many ways this is similar to the seeding
approach presented here, but in our approach the expert need not supply the hints.
Additionally, the example tracing tutors will only have the knowledge that the expert
has added, while our methods would allow the tutor to continue to improve as
additional expert or student problem attempts are added to them model. Finally, our
method computes a value for problem states automatically, and uses this value to
make decisions on which path to suggest even when multiple choices are reasonable.
This ability to differentiate between several good solutions based on the specific
context of student’s current state remains the strong point of the Hint Factory.

3 Markov decision processes to create student models

The Hint Factory consists of the MDP generator and the hint provider. The MDP
generator is an offline process that assigns values to the states that have occurred in
student problem attempts. These values are then used by the hint provider to select the
next “best” state at any point in the problem space.

A Markov decision process (MDP) is defined by its state set S, action set A,
transition probabilities T: S×A×S → [0,1], and a reward function R: S×A×S → ℜ
[13]. The goal of using an MDP is to determine the best policy, or set of actions
students have taken at each state s that maximize its expected cumulative utility (V-
value) which corresponds to solving the given problem. The expected cumulative
value function can be calculated recursively using equation (1). For a particular point
in a student’s logic proof, a state consists of the list of statements generated so far,
and actions are the rules used at each step. Actions are directed arcs that connect
consecutive states. Therefore, each proof attempt can be seen as a graph with a
sequence of states connected by actions.

We combine all student solution graphs into a single graph, by taking the
union of all states and actions, and mapping identical states to one another. Once this
graph is constructed, it represents all of the paths students have taken in working a
proof. Next, value iteration is used to find an optimal solution to the MDP. For the
experiments in this work, we set a large reward for the goal state (100) and penalties
for incorrect states (10) and a cost for taking each action (1), resulting in a bias toward
short, correct solutions such as those an expert might derive. We apply value iteration

using a Bellman backup to iteratively assign values V(s) to all states in the MDP until
the values on the left and right sides of equation (1) converge [13]. The equation for
calculating the expected reward values V(s) for following an optimal policy from state
s is given in equation (1), where R(s,a) is the reward for taking action a from state s,
and Pa(s, s′) is the probability that action a will take state s to state s′. Pa(s, s′) is
calculated by dividing the number of times action a is taken from state s to s′ by the
total number of actions leaving state s.

V (s) := max
a

 R(s,a) + Pa (s, ′ s) V (′ s)
′ s

�
�

�
�

�

�
� (1)

Once value iteration is complete, the optimal solution in the MDP corresponds to
taking an expert-like approach to solving the given problem, where from each state
the best action to take is the one that leads to the next state with the highest expected
reward value [2].

4 Method

We use historical data to estimate the availability of hints using the MDP and seeding
approaches. We performed this experiment using student attempts at the Proof
Tutorial problems 1-4, as given in Table 1, in the NC State University discrete math
course from fall semesters 2003-2006. The givens are the premises that students will
use to prove the conclusion in the tutorial. Before using the Proofs Tutorial as
homework, students attend several lectures on propositional logic and complete fill-
in-the-blank proofs.

Table 1. Description of Proofs Tutorial problems 1 through 4

Problem Givens Conclusion
1 If A then B, If C then D, not(If A then D) B and not C
2 If A then B, If not C then D, not B or not D If A then C
3 If (B or A) then C If A then (If B then C)
4 A or (If B then C), B or C, If C then A A

We generated an MDP for each semester of data separately, and Table 2 shows the

number of states generated and number of total moves generated from each problem
during each of the four semesters. The number of states represents the number of
unique steps that were seen over all problem attempts, while the number of moves
represents all student steps or state-action pairs. The number of moves gives a more
accurate reflection of class behavior, and comparing states to moves gives a notion of
how much repetition occurs in the dataset. Note that problem 1 was used in the
original validation experiments [1]. From the table, several clear trends can be seen.
First, the total number of attempts, states, and moves are lower in the Fall 2005 and
significantly lower in Fall 2006 semesters. Second, problem 4 has significantly fewer

attempts in every semester when compared to the others. According to the course
instructor, problem 4 is the hardest problem. The seeding data was provided by two
subject area experts, who worked each problem several times, but for less than one
hour per problem. An overview of their problem attempts is given in Table 3.

Table 2. Semester data, including attempts, moves, and states in the MDP for each semester

Problem Semester # Attempts MDP states # Moves
1 f3 172 206 711
1 f4 154 210 622
1 f5 123 94 500
1 f6 74 133 304
2 f3 138 162 628
2 f4 142 237 752
2 f5 105 122 503
2 f6 63 103 279
3 f3 139 145 648
3 f4 145 184 679
3 f5 113 103 577
3 f6 71 94 372
4 f3 103 46 166
4 f4 59 63 103
4 f5 34 30 48
4 f6 33 20 41

Table 3. Expert example seeding attempts, moves, and states for each problem

Problem # Attempts MDP states # Moves
1 3 10 19
2 4 12 27
3 2 15 21
4 3 8 20

To verify our previous results for testing hint availability [1], we performed a

cross-validation study, with each semester used as a test set while the remaining
semesters are used in training sets for MDPs. Hints are available for a particular state
in the test set if the MDP contains that state with a path to the goal state. We count
these matching states for each move as “move matches.” Table 4 shows the average
percent move matches between each semester and the remaining combinations of
training sets using one, two, and three semesters of data to construct MDPs. On
average, one-semester source MDPs match 71.46% of the valid moves in a new
semester of data. With two semesters of data the average move coverage reaches
77.32% for a 5.86% marginal increase. Adding a third semester of data results in an
average coverage of 79.57%, a 2.25% marginal increase over two semesters. All the
individual problems show a similar curve where the marginal return decreases after

each subsequent semester. For Problem 4 the total percentage of move matches is
approximately 15-20% lower than the other problems, and this occurs since there are
significantly fewer attempst on this more difficult problem.

Table 4. Average % move matches across problems comparing test sets and MDPs

Problem 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
1 72.79% 79.57% 82.32%
2 75.08% 80.58% 82.96%
3 79.01% 83.35% 84.89%
4 58.94% 65.77% 68.09%

Average 71.46% 77.32% 79.57%

Table 3 shows characteristics of the expert examples used for seeding the problem

MDPs. Between two and four attempts were available for each of the problems and
these attempts generated between 8 and 15 total states. Table 5 shows the results of
comparing each semester of test data with the seeded MDPs and one-semester MDPs.
Especially in problems 1 and 3, when compared to the semester data, the seeded MDP
states were “high impact” states, which included the most used paths to solve the
problems by the students. Comparing the unique state matches to move matches
shows that although the seeded MDPs match only a small percentage of unique
student problem states, they match a lot of the moves taken by students. It is
interesting to note the move matches vary much wider than a semester of MDP data.
This should be expected considering the small number of seeding attempts used. In
fact, with further analysis of the individual problems we see for problems 1 and 3
there are two common solutions, that correspond to the expert seeds, resulting in high
move coverage percent rates (62.08% and 53.33% respectively), while problems 2
and 4 have more than two common solutions, which results in much lower, but still
promising move coverage considering the small number of expert seed attempts.

Table 5. Average % unique state and move matches for seeded and 1-semester MDPs

 Unique state matches Move matches

Problem Seeded MDP 1-sem. MDPs Seeded MDP 1-sem MDPs

1 6.22% 34.55% 62.08% 72.79%

2 11.40% 34.60% 29.82% 75.08%

3 7.69% 33.36% 53.33% 79.01%

4 12.46% 23.45% 26.57% 58.94%

Average 9.44% 31.49% 42.95% 71.46%

5 Revisiting the “cold start” problem

We previously explored how quickly an MDP can be used to provide hints to new
students, or in other words, how long it takes to solve the cold start problem, for
problem 1 [1]. In this his experiment we compare hint availability for incrementally
constructed MDPs starting with no data to those starting with seed data. In both cases,
hint availability is calculated for the current student attempt, and their states are then
added to the MDP. For one trial, the method is given in Table 6. In this experiment,
we calculate the hint availability (move matches) for each consecutive student with
seeded and non-seeded MDPs. We repeat this process for 100,000 trials and plot the
resulting hint availability curves for problem 3 in Figure 1. The curves for problems
1-4 were all similar, so we present only problem 3 here. Figure 1 shows that seeding
shifts the initial starting point of hint availability from 0 to over 50%, giving a boost
at the start. By 50 attempts the seeded set is just a few attempts ahead and by 100
attempts the 2 graphs are the same. This shows that seeding helps initial hint
coverage, avoiding the steep wait for significant hint coverage when using
incrementally constructed MDPs for hints. We note that in the initial boost, the seeded
problems are covering “high impact” states, or those that are very frequent in the
student data sets.

Table 6. Method for one trial of the cold-start simulation.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 50 100

Student Attempts Seeded Not Seeded

Figure 1. Percent hints available as attempts are added to the MDP, over 100,000 trials for
Problem 3

1. Let Test = {all 523 student attempts}
2. Randomly choose and remove the next attempt a from the Test set.
3. Add a’s states and recalculate the MDP.
4. Randomly choose and remove the next attempt b from the Test set.
5. Compute the number of matches between b and MDP.
6. If Test is non-empty, then let a:=b and go to step 3. Otherwise, stop.

Table 7 shows the number of attempts needed to achieve hint percentage thresholds

with and without seeding for each of problems 1-4. Again we see that the seeding of
each problem gives an initial boost that fades over time as more student attempts are
added, which confirms our hypothesis.

Table 7. Number of attempts needed to achieve threshold % hints levels for seeded and un-
seeded MDPs constructed incrementally. Note that for problems 1 and 3, 50% hint coverage

was achieved with seeds alone.

Problem 50% 55% 60% 65% 70% 75% 80% 85% 90%
1 Not seeded 8 11 14 20 30 46 80 154 360
1 Seeded seeds seeds 4 8 21 46 80 155 360
2 Not seeded 9 15 24 36 59 88 149 286 *
2 Seeded 2 3 16 22 46 80 146 286 *
3 Not seeded 5 7 10 16 27 50 110 266 *
3 Seeded seeds 1 3 8 20 48 110 266 *
4 Not seeded 25 31 54 82 * * * * *
4 Seeded 12 22 53 80 * * * * *

(* means the method did not reach this percentage)

6 Conclusions and future work

The main contribution of this paper is to show how expert seeding can enhance the
automatic generation of hints by reducing the amount of student data initially needed
to effectively deliver hints. Although we believe that our data-driven method already
ramps up quickly [1], seeding using expert examples enhances our ability to give
hints. For the seeding problems 100% of all the seeded states appeared in each
semester of data. Obviously, the educators know the most common solutions to the
problems and by seeding the MDPs they can quickly get this data included to help
jump-start the hint giving process. Additionally, the experiments presented here
replicate and further validate our earlier work in solving the cold start problem.

We do see a few issues with seeding. One issue with using experts to seed the
MDP for hint generation is that experts may unintentionally miss a very important
solution to the problem. Students who try to solve the problem in this way would not
receive hints and therefore may believe that they are doing something wrong. This
problem, however, exists in traditional intelligent tutors as well. Further, the solutions
that the expert provides will likely become more popular, since students receiving
hints will likely use similar approaches to the experts. This is not necessarily a bad
thing, but it could limit the ability of MDPs to provide broad coverage of the student
solution space – since student solutions might be more limited if they make heavy use
of seeded hints. Seeding would likely reinforce the expert solution for a long time to
come even as additional data is acquired. To alleviate this problem the instructors can
vary which problems receive hints so that clean data with no hints can be collected on
every problem at some point. Alternatively, as enough student attempts are added to

the MDPs to generate hints, expert solutions could be removed from the data set to
promote diversity in student answers. The seeding approach is very similar to the
Bootstrapping Novice Data discussed in the related work section, and we believe it
can be useful in many data-driven methods for generating intelligent tutoring
capabilities.

In our current and future work, we are using machine learning methods to analyze
our MDPs for problem structure and for generating new problems of similar
difficulty. We are also building tools for teachers and researchers to visualize MDPs
and allow teachers to write their own hints, and modify how the MDPs are used in
generating hints.

References

1. Barnes, T., Stamper, J.: Toward Automatic Hint Generation for Logic Proof Tutoring Using
Historical Student Data. In E. Aimeur, & B. Woolf (Eds.) Proceedings of the 9th
International Conference on Intelligent Tutoring Systems (ITS 2008), pp. 373—382. Berlin,
Germany: Springer Verlag (2008)

2. Barnes, T., Stamper, J., Lehmann, L., Croy, M.: A Pilot Study on Logic Proof Tutoring
Using Hints Generated from Historical Student Data. In R. Baker, T. Barnes, J. Beck (Eds.)
Proceedings of the 1st International Conference on Educational Data Mining (EDM 2008),
pp. 197—201. Montreal, Canada. (2008)

3. Barnes, T. & Stamper, J.: Toward the extraction of production rules for solving logic proofs,
In Proc. 13th Intl. Conf. on Artificial Intelligence in Education, Educational Data Mining
Workshop, Marina del Rey, CA (2007)

4. Beck, J., Woolf, B. P., and Beal, C. R.: ADVISOR: A Machine Learning Architecture for
Intelligent Tutor Construction. In: 7th National Conference on Artificial Intelligence, pp.
552—557. AAAI Press / The MIT Press (2000)

5. Croy, M., Barnes, T. & Stamper, J.: Towards an Intelligent Tutoring System for
propositional proof construction. In Brey, P., Briggle, A. & Waelbers, K. (eds.), European
Computing and Philosophy Conference, pp. 145—155, Amsterdam, Netherlands: IOS
Publishers (2007)

6. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, c., Chen, L., Cosejo, D. I learn from you,
you learn from me: How to make iList learn from students. In V. Dimitrova, R. Mizoguchi,
B. Du Boulay and A. Graesser (Eds.), Proc. 14th Intl. Conf. on Artificial Intelligence in
Education, AIED 2009, pp. 186—195., Brighton, UK. IOS Press (2009)

7. Koedinger, K.R., Baker, R.S.J.d., Cunningham, K., Skogsholm, A., Leber, B., Stamper, J.:
A Data Repository for the EDM commuity: The PSLC DataShop. To appear in Romero, C.,
Ventura, S., Pechenizkiy, M., Baker, R.S.J.d. (Eds.) Handbook of Educational Data Mining.
Boca Raton, FL: CRC Press. (in press)

8. Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. & Hockenberry, M.: Opening the
door to non-programmers: Authoring intelligent tutor behavior by demonstration. In 7th
Intelligent Tutoring Systems Conference, Maceio, Brazil, pp. 162—173. (2004)

9. Mitrovic, A., Koedinger, K. & Martin, B.: A comparative analysis of cognitive tutoring and
constraint-based modeling. User Modeling: 313—322. (2003)

10. McLaren, B., Koedinger, K., Schneider, M., Harrer, A., & Bollen, L.: Bootstrapping Novice
Data: Semi-automated tutor authoring using student log files, In Proc. Workshop on
Analyzing Student-Tutor Interaction Logs to Improve Educational Outcomes, 7th Intl. Conf.
Intelligent Tutoring Systems (ITS-2004), Maceió, Brazil (2004)

11. Nkambou, R., Mephu Nguifo, E., Fournier-Viger, P.: Using Knowledge Discovery
Techniques to Support Tutoring in an Ill-Defined Domain. In E. Aimeur, & B. Woolf (Eds.)
Intelligent Tutoring Systems (ITS 2008), pp. 395—405. Berlin: Springer Verlag. (2008)

12. Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R.: Predicting
students performance with SimStudent that learns cognitive skills from observation. In R.
Luckin, K. R. Koedinger & J. Greer (Eds.), Proceedings of the international conference on
Artificial Intelligence in Education, pp. 467—476. Amsterdam, Netherlands: IOS Press.
(2007)

13. Sutton, S. & Barto, A.: Reinforcement Learning: An Introduction. MIT Press, Cambridge
(1998)

