
Program Representation for Automatic Hint Generation

for a Data-Driven Novice Programming Tutor

Wei Jin
1
, Tiffany Barnes

2
, John Stamper

3
, Michael Eagle

2
, Matthew W.Johnson

2
, and

Lorrie Lehmann
2

1Shaw University, Raleigh, NC, USA

weijin.sz@gmail.com
2University of North Carolina at Charlotte, NC, USA

tiffany.barnes@uncc.edu
3Carnegie Mellon University, Pittsburgh, PA, USA

john@stamper.org

Abstract. We describe a new technique to represent, classify, and use programs

written by novices as a base for automatic hint generation for programming tu-

tors. The proposed linkage graph representation is used to record and reuse stu-

dent work as a domain model, and we use an overlay comparison to compare

in-progress work with complete solutions in a twist on the classic approach to

hint generation. Hint annotation is a time consuming component of developing

intelligent tutoring systems. Our approach uses educational data mining and

machine learning techniques to automate the creation of a domain model and

hints from student problem-solving data. We evaluate the approach with a sam-

ple of partial and complete, novice programs and show that our algorithms can

be used to generate hints over 80 percent of the time. This promising rate shows

that the approach has potential to be a source for automatically generated hints

for novice programmers.

Keywords: Intelligent tutoring systems, automatic hint generation, program-

ming tutors, educational data mining and data clustering.

1 Introduction

Our goal is to create a data-driven intelligent tutor for computer programming using

Markov decision processes (MDPs), created from past student data, to generate con-

textualized hints for students solving a specific problem. This approach has been ap-

plied in the logic domain, providing hints for 70-90% of problem-solving steps

[Barnes2010a, Barnes2010b, Stamper2011].

To use the MDP approach, we must describe the student’s current solution attempt

“target” state that can be compared to existing prior attempts, which are potential hint

“sources”. Jin, et al. proposed linkage graphs to represent novice program states

[Jin2011]. In this paper, we present detailed algorithms for automatic linkage graph

extraction from programs and automatic hint generation, and our feasibility study to

evaluate the approach.

mailto:tiffany.barnes@gmail.com

2

2 Linkage Graphs to Represent Data Flow and Dependencies

A linkage graph for a program is a directed acyclic graph, as shown in Figure 1,

where nodes represent program statements and directed edges indicate order depend-

encies. If statements I and J access the same variable x, and J is the first statement

after I that accesses variable x, then J directly depends on I and we add an edge from

node I to node J with label x. We call a single trace through the graph a linkage,

which connects statements that modify the same variable. A linkage graph is the

combined set of linkages. Representation for control statements are discussed in

[Jin2011] and we do not implement this aspect of linkage graphs here. In this section

we describe our representation and extraction for linkage graphs. We use a 2-

dimensional matrix to represent a linkage graph; Table 1 (left) shows the matrix for

the program in Figure 1. Variable v0 shows up in statements 0, 9 and 10, represented

as 1’s in the corresponding rows, indicating that variable v0’s linkage starts with

statement 0 and consists of edges (0,9) and (9,10)..

Table 1. Linkage Graph Matrices. The left is for the program in Fig. 1; the right is equivalent.

(v0=mowingTime, v1=yardLen, v2=yardWidth, v3=mowingRate, and v4=lawnArea)

 v0 v1 v2 v3 v4 v0 v1 v2 v3 v4

0. double v0; 1 0. double v4; 1

1. double v1; 1 1. double v3; 1

2. double v2; 1 2. double v2; 1

3. double v3; 1 3. double v1; 1

4. double v4; 1 4. double v0; 1

5. cin >> v1; 1 5. cin >> v3; 1

6. cin >> v2; 1 6. cin >> v2; 1

7. cin >> v3; 1 7. cin >> v1; 1

8. v4 = v1 * v2; 1 1 1 8. v4 = v1 * v2; 1 1 1

9. v0 = v4 / v3; 1 1 1 9. v0 = v4 / v3; 1 1 1

10. cout << v0; 1 10. cout << v0; 1

Table 1 shows matrices for two programs that differ only in order. Since there are

no variable dependencies among statements 0-4 and among 5-7, they are equivalent.

We note that programs with the same output are not necessarily equivalent. For ex-

Fig. 1. The linkage graph for a program to calculate money earned for mowing grass. The col-

ored directed edges identify variable dependency between nodes.

double mowingTime, yardLen, yardWid, mowingRate, lawnArea;

cin >> yardLen; cin >> yardWid; cin >> mowingRate;

lawnArea = yardLen * yardWid;

mowingTime = lawnArea / mowingRate; cout << mowingTime;

double mowingTime; double yardLen; double yardWid; double mowingRate; double lawnArea;

 cin >> yardLen; cin >> yardWid; cin >> mowingRate;

mowingTime = lawnArea / mowingRate; lawnArea = yardLen * yardWid;

cout << mowingTime;

ample, a = b * c / d is not equivalent to t = b * c; a = t / d. Our goal is that equivalent

programs should have the same linkage matrix representation. To accomplish this, we

must determine the order of the variables (corresponding to columns of the matrix)

and the order of the statements (corresponding to rows of the matrix). The statement

order will be determined based on the variable order and the variable dependencies.

Instructor-Provided Specification File: An initial list of variables is taken from

an instructor-provided variable specification file for the given programming problem,

as shown in Table 2, or could alternatively be generated from the problem description

using a bag-of-words approach. Each item specifies a program variable, and consists

of three parts: (1) correct data types, (2) phrases that describe the item and may com-

pose the variable name for that item, and (3) how the variable is assigned a value,

with the keyword ‘input’ indicating user-entered values. In Table 2, a slash means

“or” – either one of them may be present in the name.

Table 2. A Possible Variable Specification File for the Programming Problem in Figure 1.

Name Types Variable Name Terms Assignment

v0 float, double mowing time/hours v1 * v2 / v3

v1 float, double yard/lawn length Input

v2 float, double yard/lawn width Input

v3 float, double mowing rate/speed Input

v4 float, double yard/lawn area v1 * v2

Assigning variables and extending the variable specification: Meaningful vari-

able names, such as yardLength or yardLen, are a common requirement in introducto-

ry programming courses. A preliminary analysis of novice programs shows that stu-

dents choose variable names in this fashion. Second choice names are also common.

This suggests that a simple list of all the variable names could be aggregated from all

programs and compared to the instructor specification file. For those matching the

specification, they are assigned the given variable names. If any remain, we can com-

pute simple similarity and thesaurus lookups to determine if any match to the existing

variables or one another. We can cluster the remaining variables and add representa-

tive variables to the variable specification.

Variable Normalization: In order to avoid the problem of having a program cate-

gorized as different simply because of varying names for variables, we normalize

variable names. The variable specification file determines the variable order and nor-

malized names. If a variable name is ambiguous, for example, length may refer to

yard length or house length, we can use how the variable is used to determine its pur-

pose. If programs are collected in an interactive environment, we could also ask the

student which data item the variable refers to.

Statement Sorting: After variables are normalized, the statements will be sorted.

Statement sorting consists of three steps. Step 1 – Preprocessing. We break a declara-

tion statement for multiple variables into multiple declaration statements, with each

declaring only one variable; we do the same for input and output statements. We also

break a declaration with initialization into a declaration and an assignment.

Step 2 – Create statements sets according to variable dependencies. The first set

consists of statements that do not depend on any other statement. The second set con-

sists of the statements that depend only on those from the first set. The third set con-

4

sists of the statements that depend only on those from the first and second sets, and so

on. For example, for the programs in Table 1, the first set consists of statements 0 – 4,

the second set 5 – 7, the third set 8, the fourth set 9, and the last set 10.

Step 3 – Within each set, statements are sorted in the decreasing order of their

variable signatures. Assume that there are n data items in the variable specification

file. A statement’s variable signature is s0s1…sn-1, where si is 1 if the normalized vari-

able name vi is in the statement and 0 otherwise. For example, the sorted version for

the matrix in Table 1 (right) is the matrix shown in Table 1 (left).

Linkage Matrix Representation Uniqueness: The matrix columns are labeled

and ordered by normalized variable names. The rows are labeled and ordered by sort-

ed statements. Step 2 guarantees the equivalency of the new program to the original;

sorting ensures that equivalent programs have the same matrix representation.

3 Hint Generation for Work-in-Progress Programs

The first step in hint generation for a programming problem is to collect a set of cor-

rect solutions from previous students. Then we build linkage graphs for these model

solutions. They serve as the sources for hint generation. New solutions may be added

to the set. We also build linkage graphs for intermediate states (e.g. program snap-

shots saved when the compile button is pressed), which are linked by directed arcs

that indicate the order the program was written. Each complete program results in a

sequence of states illustrating each step in development. These sequences are com-

posed into a single large graph, with equivalent states (linkage graphs) mapped to one

another. We then assign a reward value to each state (say 1 point for each linkage)

and the correct solutions (say 100), and apply value iteration to create a Markov Deci-

sion Process [Barnes2010b]. The linkages act as state features for the states and the

reward function computes the state value based its closeness to being complete.

When a student requests a hint, the tutor will build a linkage graph for the partial

program. The tutor will find a linkage graph in the MDP that is closest in structure, or

a ‘match’. When a student’s state is matched in the MDP, the MDP allows us to select

the next best state by choosing the one with the highest value. We may generate a hint

based on the next best state in the MDP or on the final complete solution if the student

were to follow the path with the highest values at each step. Suppose that for the par-

tial programs in Table 3, the complete linkage graph as the source for hint generation

is Table 1 (left). A partial linkage graph matrix has the same underlying structure as

the complete linkage graph: The statements and variables are in the same order as

those in the complete graph. The numbers in the matrices (Table 3) represent the or-

der of the statements in the partial programs. We can use missing items or items with

wrong orders from the complete graph to generate hints. For example, v4 = v1*v2 is

missing from Table 3 (left), so the hint might be “Calculate v1*v2 instead of v1/v2”. In

Table 3 (right), cin>> v1 and cin>> v2 are after v4 = v1*v2, so the hint might be “cin>>

v1 and cin >> v2 should be before v4 = v1*v2”. Note that when generating hints, we use

student variable names (e.g. yardLen) instead of normalized names (e.g. v0 and v1).

No Matching State Found: Linkage Graph Transformation. If the work-in-

progress solution takes a different approach from all existing correct solutions, we

have to determine whether any of the existing complete solutions can be modified to

fit the current work-in-progress program. Table 4 shows how we expand the source

linkage graph to match the target partial program by adding new rows (and columns)

and splitting existing ones as needed. Once this transformation occurs, the new link-

age graph can be compared to the partial program to generate hints. This allows us to

provide hints right away with a provided expert solution.

Table 3. The Linkage Matrices for the Partial/Incorrect Programs.

… cin >> v1; cin >> v2; cin >> v3;

v4 = v1 / v2; // wrong expression

… v4 = v1 * v2; // wrong order

cin >> v1; cin >> v2; cin >> v3;
 v0 v1 v2 v3 v4 v0 v1 v2 v3 v4

0. double v0; 0. double v0;

1. double v1; 1 1. double v1; 1

2. double v2; 1 2. double v2; 1

3. double v3; 1 3. double v3; 1

4. double v4; 1 4. double v4; 1

5. cin >> v1; 2 5. cin >> v1; 3

6. cin >> v2; 2 6. cin >> v2; 3

7. cin >> v3; 2 7. cin >> v3; 2

8. v4 = v1 * v2; 8. v4 = v1 * v2; 2 2

9. v0 = v4 / v3; 9. v0 = v4 / v3;

10. cout << v0; 10. cout << v0;

Table 4. Transformed Linkage Graph Matrix to Match a Partial Program.

Complete/Correct Program: ... v0 = (v1 * v2) / v3; cout << v0;

Partial Program that Needs Hints: ... v4 = v1 * v2;

 v0 v1 v2 v3 v4 //column v4 added

 0. double v0; 1

 1. double v1; 1

 2. double v2; 1

 3. double v3; 1

 3b. double v4; 1 // a row is added

 4. cin >> v1; 2

 5. cin >> v2; 2

 6. cin >> v3; 2

7. v0=v1*v2/v3;
7a. v4 = v1 * v2 ; 3 3 2 // a row broken into 2

rows 7b. v0 = v4 / v3; 2 3 3

 8. cout << v0; 3

4 Effectiveness of Linkage Graph for Hint Generation

We have implemented the algorithms described herein in the context of jFlex/CUP.

To evaluate the effectiveness of using linkage graphs to generate hints, we analyzed

student submissions for a lab from the Spring 2011 introductory programming course

6

at UNC-Charlotte. The program is to calculate the pay for mowing the lawn around a

house. There are 200 total submissions with 37 correct solutions.

We performed vertical and horizontal evaluations. The ‘vertical’ evaluation was

applied to the set of correct submissions to generate hints for the first intermediate

version that can compile from its later complete counterpart. Since the same student

wrote the partial and complete programs, we expected the hints to make sense. This

baseline was to confirm that our ‘overlay’ hint generation approach would work.

Among 16 randomly selected correct submissions, good hints were generated for 14

(87.5%) of them, with six correcting a mistake, four finishing one more step, four no

hints due to program already complete. The only two cases, where the hints were not

appropriate, occurred when variable names were reused for different purposes.

We applied a ‘horizontal’ evaluation to a sample of 15 randomly selected incor-

rect submissions. For each of incorrect solutions, we manually selected a similar cor-

rect solution, which was not necessarily the best match. We then ran our program to

generate linkage graphs and generate hints based on their differences. We found that

we could provide meaningful hints for 10 (66.6%) of the incorrect submissions. We

believe this rate is promising, since we did not perform a best-match search. With a

best-match search and full MDPs, we could leverage partial solutions on paths to

correct solutions to provide intermediate states for hints. The remaining 5 programs

fall into the following two categories: (1) Variable name reuse. (2) The current algo-

rithm looks at each linkage separately. A hint is provided for the first missing state-

ment along each individual linkage. For example, if a program didn’t convert the lawn

area from square feet to square yards, the hints will most likely include “double

lawnSqYds” A better hint should be the next statement along that linkage “lawnSqYds

= lawnSqFt / 9”. This can be addressed by considering the relevant linkages together.

In both cases, implementing our proposed algorithms for detecting variable name

reuse would bring the successful hint rates to over 86. We believe this success rate

indicates that our approach is likely to work.

Future Work will include implementing variable reuse detection, linkage graph

transformation when a match cannot be found, and further automating the variable

normalization process. Finally, we will also determine strategies for hint presentation,

since a full list of ‘missing’ items may be intimidating for novices.

Acknowledgement. This work was partially supported by NSF grants IIS-0845997

and CCLI-0837505.

References.

BARNES, T. AND STAMPER, J. 2010. Automatic hint generation for logic proof tutoring using historical data.

Journal Educational Technology & Society, 13 (1), Special issue on Intelligent Tutoring Systems, 3-12.

BARNES, T. AND STAMPER, J. 2010. Using Markov decision processes for student problem-solving visuali-

zation and automatic hint generation. Handbook on Educational Data Mining . CRC Press.

JIN, W., LEHMANN, L., JOHNSON, M., EAGLE, M., MOSTAFAVI, B., BARNES, T. STAMPER, J. 2011. Towards

Automatic Hint Generation for a Data-Driven Novice Programming Tutor. Workshop on Knowledge

Discovery in Educational Data, 17th ACM Conference on Knowledge Discovery and Data Mining.

STAMPER, J., BARNES, T. CROY, M. Enhancing the automatic generation of hints with expert seeding. To

appear in Intl Journal of AI in Education, Special Issue “Best of ITS”, 2011. IOS Press.

