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Abstract. Past studies have shown that Bayesian Knowledge Tracing (BKT) 
can predict student performance and implement Cognitive Mastery successful-
ly. Standard BKT individualizes parameter estimates for skills, also referred to 
as knowledge components (KCs), but not for students. Studies deriving individ-
ual student parameters from the data logs of student tutor performance have 
shown improvements to the standard BKT model fits, and result in different 
practice recommendations for students. This study investigates whether indi-
vidual student parameters, specifically individual difference weights (IDWs) 
[1], can be derived from student activities prior to tutor use. We find that stu-
dent performance measures in reading instructional text and in a conceptual 
knowledge pretest can be employed to predict IDWs. Further, we find that a 
model incorporating these predicted IDWs performs well, in terms of model fit 
and learning efficiency, when compared to a standard BKT model and a model 
with best-fitting IDWs derived from tutor performance. 
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1 Introduction 

Models of student learning have been successfully employed by intelligent tutoring 
systems to improve learning outcomes for more than two decades. Student modeling 
has been used both to individualize curriculum sequencing [1, 2, 3] and/or to individ-
ualize hint messages [4, 5]. Each of the modeling frameworks cited here employs a 
Bayesian method to infer student knowledge from student performance accuracy, and 
Bayesian modeling systems have been shown to accurately predict students’ tutor 
and/or posttest performance [1], [3], [6,7]. 

These models generally individualize modeling parameters for individual 
knowledge components (KCs, also referred to as skills) [8], but not for individual 
students. Several studies have shown that individualizing parameters for students, as 
well as for KCs, improves the quality of the models [1], [9, 10, 11, 12].  
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These approaches to modeling individual differences among students have moni-
tored student performance after the fact, in tutor logs that have been previously col-
lected to derive individualized student parameters for the tutor module(s). While these 
efforts have proven successful, they complicate the actual use of student modeling 
within an ITS module, since the concurrent estimation and use of individualized pa-
rameters in a tutor lesson is generally quite challenging, at best. In this paper we ex-
amine whether parameter estimates can be individualized for students prior to em-
barking on a tutor module, based on student performance in earlier activities. In par-
ticular, we examine whether parameter estimates can be individualized based on per-
formance in two activities that naturally precede tutor modules: reading on-line in-
structional text and taking a conceptual knowledge pretest. 

We explore this issue in the Bayesian Knowledge Tracing modeling framework 
[1] and in a unit of the Genetics Cognitive Tutor [6]. In the following sections we 
describe Knowledge Tracing, the on-line student activities, the predictors derived 
from students’ reading and pretest activities, and our success in using these predictors 
to model individual differences in student learning and performance in the tutor. 

1.1 Bayesian Knowledge Tracing 

Bayesian Knowledge Tracing (BKT) [1] employs a two-state Bayesian learning mod-
el for each knowledge component (KC) in a tutor curriculum: at any time a student 
either has learned or not learned a given KC. BKT employs four parameters to esti-
mate the probability that a student has learned each KC: 
     pL0 the probability a student has already learned how to apply a KC  

 pT    the probability a student learns a KC at each opportunity to apply it 
pG the probability a student will guess correctly if the KC is not learned 

     pS the probability a student will make an error when the KC has been learned 
Cognitive Tutors employ BKT to implement Cognitive Mastery, in which the curricu-
lum is individualized to afford each student just the number of practice opportunities 
needed to enable the student to “master” each KC. 

Individual Differences. Knowledge Tracing and Cognitive Mastery general-
ly employ best-fitting estimates of each of the four parameters for each individual KC 
but not for individual students. In this work, we incorporate individual differences 
among students into the model in the form of individual difference weights. Follow-
ing Corbett and Anderson [1], four best-fitting weights are estimated for each student, 
one weight for each of the four parameter types, wL0, wT, wG, wS. In estimating and 
employing these individual difference weights (IDWs), we convert each of the four 
probability estimates to odds form (p/(1-p)), multiply the odds by the corresponding 
student-specific weight and convert the resulting odds back to a probability (equation 
1.) Let i represent the parameter type, (pL0, pT, pG, pS), k represent the KC and s the 
student. The individually weighted parameter for each KC and student, piks, is thus: 

 piks = pik * wis / (pik * wis + (1 - pik) (1) 

where pik is a best fitting parameter estimate for the KC across all students and wis is 
the corresponding individual difference weight for the student.  
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2 Student Activities in This Study 

The genetics topic in this study is gene interaction, which examines how two genes 
can interact in controlling a single phenotypic trait. When two genes, each with a 
dominant and recessive allele, control a single trait, e.g., coat color in cattle, there can 
be up to four different resulting phenotypes (four colors). But, there are many ways 
the two genes can interact that result in only two or three different phenotypes. The 
goal of the Genetics Cognitive Tutor  “process-modeling” lesson in this study is to 
help students understand and model the different ways two genes can interact to yield 
two, or three, or four phenotype values. This study focuses on three activities on this 
topic that students completed in succession: reading gene interaction instructional text 
online, taking a gene interaction pretest, and finally using the Genetics Cognitive 
Tutor module on Gene Interaction Process Modeling. 

On-Line Instructional Text. The online instructional text consisted of 23 screens, 
structured like pages in a book. Students could move forward and backward through 
the screens, one screen at a time. After a student touched each page once a “done” 
button appeared and the student could then continue reading, or exit at any time.  

Conceptual Knowledge Pretest. Students completed a pretest with nine concep-
tual questions divided into three topics. The first three questions focused on general 
knowledge of basic Mendelian transmission with 2 genes, the second three questions 
focused on process modeling — reasoning about phenotypes that could or could not 
result from given gene interactions, and the last three questions focused on abductive 
(backward) reasoning, reasoning about gene interactions that could or could not have 
given rise to observed phenotypes. This is not a problem-solving pretest; the last six 
questions are not similar to the Cognitive Tutor problems. Instead, they required stu-
dents to reason about genetics processes and abductive reasoning more abstractly. 

Genetics Cognitive Tutor: Gene Interaction Process Modeling. The Genetics 
Cognitive Tutor (GCT) lesson consisted of 5 process-modeling problems. In each 
problem, students are given a description of how two genes interact to determine a 
phenotype, e.g., coat color in cattle. Students (a) map the description onto one of sev-
en gene interaction templates with 3 menus, (b) identify the phenotypes of the four 
true-breeding genotypes. (c) model the offspring genotypes and phenotypes resulting 
from two different parental crosses, and finally (e) summarize the phenotypes associ-
ated with all possible individual genotypes and how the phenotypes arise. 

The Cognitive Model for GCT Process Modeling. There are an average of 45 
steps in each of these tutor problems. Some of the KCs governing these steps are 
unique to a problem, while others are applicable in multiple problems. In this analysis 
we excluded KCs that occurred only one or two times across the 5 problems. Of the 
remaining 31 KCs, 28 appeared 5 times across the curriculum and 3 appeared 4 times. 
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3 Predictors 

Our goal is to examine the feasibility of setting individual difference weights for stu-
dents before students begin work in a tutor lesson. Several studies have focused on 
incorporating individual differences into BKT models from the tutor data itself. Cor-
bett and Anderson [1] showed that a BKT model with the four IDWs described in 
Section 2 was a better predictor of individual differences in posttest performance than 
a standard, non-individualized BKT model. Pardos and Heffernan [10] individualized 
just the pL0 parameter, the initial probability the student knows a KC before its first 
application, based on either the student’s first attempt at each KC within the lesson or 
on all attempts at each KC — and found that either individualized method yielded 
reliably better fits to multiple data sets than the non-individualized BKT model. 
Yudelson, Koedinger and Gordon [11] individualized both learning parameters, pL0 
and pT, based on student accuracy in a tutor lesson, and found that individualizing pT 
yielded reliably better fits than the non-individualized BKT model, while individual-
izing pL0 did not reliably improve the goodness of fit. Lee and Brunskill [9] derived 4 
individual difference parameters based on performance in a tutor module and found 
that the resulting model recommended substantially more practice for some students 
and substantially less practice for others than the non-individualized model. 

Finally, in an alternative approach to BKT, a variety of student modeling frame-
works grounded in Item-Response Theory employ a single individual difference pa-
rameter as a basic component of the model [12,13,14].  

To date, these approaches estimate individual student differences after the fact on 
tutor data that has already been collected. We examine whether individual differences 
can be modeled based on prior activities that are natural components of an on-line 
learning system so that they can be used when a student first begins an ITS module. 

3.1 Predictors Derived from Instructional Text Reading Performance. 

We examine two measures of student reading performance: reading time, and revisit-
ing pages in the text. 

Reading Time. No prior ITS research employs reading rates to individualize pa-
rameters in a learning environment, but there is substantial evidence that reading time 
varies measurably with comprehension difficulty, and it follows that reading time 
may prove sensitive to individual differences in comprehension difficulty. Harvey and 
Anderson [15] showed that reading times for on-line declarative instruction in the 
ACT Programming Tutor are sensitive to differences in processing time necessary to 
encode familiar vs. novel material. More generally, an extensive research literature 
demonstrates that reading time is sensitive to relative comprehension difficulty [16].  

Text Pages Revisited. Students can read through the instructional text as they 
would pages in a book. Some students may choose to strictly read forward through the 
text, while others may choose to revisit earlier pages in the text. Students who re-read 
text may be demonstrating a meta-cognitive self-monitoring skill, which, if it transfers 
to problem-solving in the tutor may be correlated with p(T), learning rate in the tutor.  
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3.2 Predictors Derived from a Conceptual Knowledge Pretest. 

Some prior projects have employed pretest accuracy to initialize ITS student mod-
els [3, 17]. We examine several measures of students’ pretest performance. 

Pretest Accuracy. We examine whether students’ pretest accuracy on each of the 
three types of pretest questions, general knowledge, process modeling and abductive 
reasoning, predicts individual difference in learning or performance in the GCT gene 
interaction process modeling lesson.  

Pretest Answer Changes. We examine whether changing answers in the pretest 
from a correct initial answer to an incorrect final answer, or vice versa, is a predictor 
of individual differences in learning or performance in the tutor module. Checking 
and changing answers may be evidence of a meta-cognitive self-monitoring skill that 
may translate into higher learning rates in the tutor module. Alternatively, it may be 
correlated with the slip rate in the tutor, p(S), if the students slipped in making the 
initial error they are correcting. 

Time on Task. Finally we examine whether time to complete the pretest is a pre-
dictor of individual differences in the tutor module. 

4 Methods 

The data analyzed in this study come from 83 undergraduates enrolled in either a 
genetics or introductory biology course.  All students were recruited to participate in 
the study for pay. Students participated in two 2.5-hour sessions on consecutive days 
in a campus computer lab. In this study, the first session focused on gene interaction 
and students read the on-line gene interaction instructional text, took the on-line pre-
test, and used the gene interaction process modeling tutor module as the first three 
activities in this session. The study focuses on modeling the 83 students’ first actions 
on 12,287 problem steps in the tutor module.  

4.1 Fitting Procedures 

First, we found best-fitting group parameter estimates for each of the 4 parameters 
(pL0, pT,  pG, pS) in the standard BKT (“SBKT”) model for each of the 31 different 
knowledge components in the tutor lesson, with nonlinear optimization. The objective 
function takes the observed opportunities for a single skill and a set of group parame-
ters as input and returns the negative log-likelihood (-LogLik). Optimization ultimate-
ly returns the set of group parameters that best fit the skill. Both pG and pS were 
bounded to be less than 0.5, as in [18] to avoid paradoxical results that arise when 
these performance parameters exceed 0.5 (e.g., a student with a higher probability of 
knowing a KC is less likely to apply it correctly.) 

Second, we re-fit the tutor data with an individualized BKT model: We obtained 
four best-Fitting Individual Difference Weights (IDWs) for each of the 83 students, 
one weight for each of the four parameter types, wL0, wT, wG, wS to construct this 
“FIDW” model. As described in Section 1 equation 1, each student’s four weights are 
mapped across the best-fitting group learning and performance parameter estimates 
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for each of the 31 KCs to individualize these parameter estimates. The objective func-
tion takes the fixed group parameters, the observed opportunities for a student, and a 
set of IDWs (wL0, wT, wG, wS) and returns the -LogLik. Optimization ultimately 
returns the set of IDWs that maximize the fit for the student. 

Third, we derived 12 predictive features, 6 from the on-line reading data and 6 
from the pretest data to predict these four individual difference weights for the 83 
students, as displayed in Table 1. We performed a factor analysis on log reading times 
for the 23 individual pages to reduce the number of predictors. The factor analysis 
yielded a total of four factors (RTF1, RTF2, RTF3, RTF4), which each account for at 
least 10% of the variance and align with subtopics in the text, as summarized in the 
table. These four factors accounted for 54% of the total variance and additional fac-
tors each accounted for less than 5% of the variance. 

Table 1. 12 Predictor variables extracted from the on-line reading and pretest data 

   RTF1 Reading: Time for a 5-page intro with familiar content on basic Mendelian genetics 
   RTF2 Reading: Time for 6 pages with charts of various ways 2 genes can interact 
   RTF3 Reading: Time for 3 pages on parental crosses with offspring genotypes & traits 
   RTF4 Reading: Time for 2 pages with full-page diagrams of dominant & recessive alleles 
   RRNP Reading: Total number of previous pages re-read 
   RRTD Reading: Total distance traversed (intervening pages) in re-reading text pages 
   PACC1 Pretest: % Correct for 3 general knowledge questions 
   PACC2 Pretest: % Correct for 3 process modeling questions 
   PACC3 Pretest: % Correct for 3 abductive reasoning questions 
   PCIC Pretest: Number of answers initially incorrect changed to correct 
   PCCI Pretest: Number of answers initially correct changed to incorrect 
   PTime Pretest: Total time to complete the pretest 

 
Fourth, we employed each of these 12 variables to independently predict the four 

sets of IDWs: wL0, wT, wG, wS. Since these are multiplicative weights, we fit a trans-
formation of the weights w/(1+w). This transformation has the property that the neu-
tral weight 1.0 (which does not modify the corresponding best-fitting group parame-
ter) is the midpoint of the transformed scale. We built a robust regression model with 
the 12 predictors for each of the IDWs. Robust regression is less sensitive to outliers, 
variable normality, and other violations of standard linear regression assumptions.  

Finally, after deriving the 4 predicted IDWs for each of the 83 students, we recal-
culated the earlier FIDW BKT model with the predicted IDWs, in place of the best-
fitting IDWs to construct the “PIDW” model.  In summary, we have three BKT model 
variants: 

1. SBKT: Standard BKT model with best-fitting group parameter estimates, 
2. FIDW: Standard BKT model with Fitted Individualized Difference Weights 
3. PIDW: Standard BKT model with Predicted Individualized Difference Weights 
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5 Results and Discussion 

Table 2 summarizes our results.  Columns 2 and 3 summarize the overall fit of the 
standard BKT and the two IDW models to the tutor data. Column 2 displays root 
mean squared error (RMSE) for the fits and column 3 displays Accuracy (the proba-
bility a model correctly predicts students’ correct or incorrect responses, with a 0.5 
threshold on predicted accuracy). As can be seen, the FIDW model with best-fitting 
IDWs fits the tutor data best; it reduces RMSE by 8.7% compared to the standard, 
non-individualized SBKT model (0.2794 vs. 0.3059). The new PIDW model with 
predicted IDWs is about 40% as successful as the best-fitting FIDW model: The new 
model reduces RMSE by 3.6% compared to the standard SBKT model (0.2950 vs. 
0.3509). The FIDW model is also about 2.4% more accurate than the SBKT model 
(0.8948 vs. 0.8742) while the PIDW model is about 0.8% more accurate than the 
SBKT model (0.8812 vs. 0.8742).  

Table 2. Goodness of fit of the 3 models and differences in practice needed to reach mastery. 

 
 

Model 

 
 

RMSE 

 
 

Accuracy 

# Students 
Needing 

Less 

# Fewer 
Opportunities 

Needed 

# Students 
Needing 

More 

# More 
Opportunities 

Needed 
SBKT 0.3059 0.8742 - - - - 
FIDW 0.2794 0.8948 56  

(46) 
17.27 

(17.24) 
27 
(19) 

27.04 
(27.37) 

PIDW 0.2950 0.8812 54  
(46) 

10.48 
(10.96) 

27 
(19) 

11.59 
(13.58) 

 
Even small differences in model fits, such as what we found in this study, can have 

large effects on the amount of recommended work assigned to the student [19]. In 
order to explore the practical impact of the individualized models, we examined the 
number of practice opportunities that were necessary for students to reach mastery 
under each of the three models — that is, the number of opportunities required for pL 
(the probability the student has learned a rule) to reach 0.95. This analysis is possible 
because students completed a fixed curriculum in this study with 4 or 5 opportunities 
per KC, and most students reached mastery for all of the KCS in the available number 
of opportunities under all three models.  

On average students mastered 94% of the skills under the SBKT model, 90% under 
the FIDW model, and 93% under the PIDW model. If a student failed to reach mas-
tery on a KC under one model, we conservatively estimated that the student would 
reach mastery on the next opportunity. On average students needed 57.22 total oppor-
tunities to reach mastery of the 31 KCs under the SBKT model, 53.65 total opportuni-
ties under the FIDW model, and 53.71 under the PIDW model. 

 The bottom two rows in the last four columns of Table 2 show how many students 
need less practice to reach mastery under each of the individualized BKT models than 
under the standard BKT model, and how many students need more practice. The 
numbers in parentheses show how many students are common to the two sets under 
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the two models. These columns also show how much more or less practice the stu-
dents need before the model would consider them to have mastered the KCs. 

Both individualized models, FIDW and PIDW, substantially modify the amount of 
practice needed to reach mastery compared to the standard SBKT model. Under the 
best-fitting FIDW model, 56 students needed less practice to master all the KCs than 
under the standard SBKT model and on average these students required 17.3 fewer 
practice opportunities to reach mastery under FIDW than under SBKT. Under the 
predicted PIDW model, 54 students needed an average of 10.5 fewer opportunities to 
master all the KCS than under the SBKT model.  The two individualized model agree 
on a set of 46 students who need fewer practice opportunities to reach mastery, but 
again the FIDW model requires less practice (17.2 opportunities) of these students 
than the PIDW model (11.0 opportunities). 

Under both the FIDW and PIDW models, 27 students need more practice opportu-
nities to reach mastery than under the SBKT model, but students need 27 more prac-
tice opportunities under the FIDW model and only 11.6 more opportunities under 
PIDW model. The two models agree on a set of 19 students who need more practice, 
but again the FIDW model requires more practice than the PIDW model. 

Overall, the FIDW and PIDW models were in 78% agreement on which students 
needed fewer or more opportunities to master all the KCs than under the standard 
SBKT model. The new predicted PIDW model reaches roughly 60% of the potential 
learning efficiency gains identified by the best-fitting FIDW model, and does so with-
out the use of the student tutor performance data. 

 
5.1 The Predictive Models for the Four Individual Difference Weights 

Table 3 displays the coefficients for each of the 12 predictors in the regression 
model for each of the four IDWs. The predictors that entered reliably into the robust 
regression model are highlighted with asterisks. 

The most interesting result is that student behaviors in reading the text are, in fact, 
reliable predictors of some individual difference weights. Three of the reading time 
factors, RTF1, RTF2, RTF4 each reliably predicted one of the four individual differ-
ences weights (wT, wG, and wG respectively). The pages that load on RTF1 specifi-
cally are introductory pages on basic Mendelian transmission that should be familiar 
to all the students and this factor is inversely related to wT — the longer students take 
reading what should be familiar text, the lower their learning rate in the tutor. Howev-
er, student behaviors in re-visiting pages did not reliably predict any IDWs. 

Not surprisingly, more pretest variables reliably entered into the four IDW models. 
Differences in student accuracy on general knowledge (PACC1) and on process- 
modeling (PACC2) — the same type of reasoning as in this tutor unit — each reliably 
predict two of the four IDWs. Three other pretest measures, including student accura-
cy on abductive reasoning questions (PACC3) — a type of reasoning not employed in 
this tutor unit, total time (PTime) and number of changes from an initially incorrect 
answer to a correct answer (PCIC) each marginally predicted one IDW. 
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Table 3. Coefficient Summary Table (.  < 0.10, * < 0.05, **<0.01) 

  wL0 wT wG wS 

(Intercept) 0.0528 0.0785 0.0623 0.8752** 

RRTD -0.0314 0.0317 -0.0061 0.0215 

RRNP 0.0221 -0.0055 -0.0056 -0.007 

RTF1 -0.0046 -0.0834* -0.0193 -0.0089 

RTF2 0.0338 0.0335 -0.0627* 0.0053 

RTF3 0.0131 0.017 0.0192 -0.0215 

RTF4 -0.004 0.0204 -0.052* 0.0029 

PACC1 0.3504** 0.1469 0.1109 -0.3038** 

PACC2 0.2154. -0.0398 0.563** -0.3021** 

PACC3 0.0841 0.4373. 0.144 -0.1699 

PCIC 0.0096 -0.0248 -0.0327. 0.005 

PCCI 0.0143 -0.0092 0.0352 0.0189 

Ptime 0 0.0004. 0 0.0001 

RMSE 0.1809 0.2245 0.2055 0.1443 

Conclusion 

We have developed and discussed a method of inserting individual student differences 
into a traditional Bayesian Knowledge Tracing model that employs pre-tutor reading 
and test data to predict individual difference weights. This is important because inte-
grating IDWs into an intelligent tutor is much easier if the IDWs can be assigned 
before the student starts working with the tutor.  An advantage of our method is that it 
can be implemented easily; only a single adjustment needs to be made to each of the 
group parameters before the student starts the lesson. This initial attempt to pre-set 
individual difference weights is already quite successful.  

The goodness of fit of this new predictive PIDW BKT model falls almost midway 
between the standard non-individualized SBKT model and the fitted FIDW BKT 
model. Further, the individualized practice recommendations for the predictive PIDW 
BKT model are similar to the practice recommendations for the fitted FIDW BKT 
model, although the new PIDW model does not identify all the opportunities to de-
crease the amount of practice for some students, nor the need to increase the amount 
practice for other students, that are identified in the best-fitting FIDW model. Howev-
er, if implemented, the PIDW model would result in some students needing an aver-
age of 18% fewer total practice opportunities to reach mastery with other students 
needing an average of 20% more total practice opportunities.  This is a potentially 
meaningful difference, as it could lead to students spending just the right amount of 
time with the tutor to achieve mastery.  
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An important finding is that student data from the reading the instructional text is a 
useful predictor of learning and performance in an intelligent tutor. Three reading 
time factors entered reliably into predictive models for individual difference weights 
in the study. Several conceptual pretest variables also reliably predicted individual 
differences in learning and performance in an ITS. These results suggest that it is 
possible to assign IDWs to students before they begin to use the tutor. We expect, but 
it remains for future research to explore, that other individual difference frameworks 
can also benefit from using data from the prior to tutor activities as predictors for 
initial IDW assignment.   
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