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ABSTRACT: We describe a feature engineering approach to predict future course           

performance based on students’ interactions with an online math primer. To help incoming             

computer science freshman students gain competency on core discrete math concepts, we            

developed a primer course deployed in an interactive learning environment. The primer            

covered three foundational topics — logic, sets, and functions. Students completed this            

primer in the summer prior to their first semester as computer science undergraduates. We              

used random forest modeling and linear regression to understand which features predict            

performance in a subsequent face-to-face math course. Results indicated that students’           

performance on two of the three units (sets and functions) was positively associated with              

final grades, whereas total time spent in the course was negatively associated with final              

grades. We discuss implications for iterative course design as well as utility of educational              

data mining approaches for tracking preparation for future learning. 
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1 INTRODUCTION 

The proliferation of data on students interacting with online learning environments has opened up              

enormous possibilities for understanding student behavior within the last decade or two (Baker &              

Inventado, 2014). It has also enabled iterative improvements of these learning environments to             

promote student learning. However, a key challenge is to understand what aspects of students’              

behavior are most predictive of success in future learning situations. 

In recent years, there have been calls to assess learning in terms of “robust” learning               

outcomes, going above and beyond traditional pretests and posttest which often measure only             

shallow encoding and retrieval (Koedinger, Corbett, & Perfetti, 2012). Robust learning refers to             

whether learning occurs in a way that transfers, prepares students for future learning, and is               

retained over time. While research on learning in online learning environments has been rapidly              

increasing, much less work has looked at how online courses prepares students for learning during               

future learning opportunities, including both online or in-person (Beaubouef, 2002). For example, if a              

student takes an online introductory course in mathematics, we can tell how the student performed               
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within the system itself, but whether this interaction with online learning prepared the student for               

future math courses is often unclear (Reilly & Emmett, 2011). 

Prior research has attempted to predict student performance on tests of transfer.            

Specifically, such work has found that avoiding help seeking and making fast responses after bugs               

were negatively associated with transfer (Baker, Gowda, & Corbett, 2011). Hershkovitz et al. showed              

that student performance on a transfer test can be predicted by calculating moment-to-moment             

probabilities of learning a particular skill. Other research has focused on using early course data to                

predict future success, and develop early warning systems to students identified as at risk for failure                

(Costa et al., 2017; Dominguez, Bernacki, & Uesbeck, 2016). While prior work on online learning and                

transfer sheds important light on what attributes of student behavior are critical to transfer, it has                

largely focused on performance within a single online course. No prior studies to our knowledge               

have looked at the impact of student performance across multiple online sequential courses or on a                

future face-to-face course. In this paper, we analyze learning analytics data from an online math               

primer course and develop a prediction model for performance on an in-person computer science              

follow-up course students complete. 

2 TOOLS & METHODS

2.1 Open Learning Initiative 

The Open Learning Initiative (OLI) is an open-ended learning environments that allows instructors to              

develop online courses consisting of interactive activities and diverse multimedia content. Detailed            

student interactions with the course materials, such as watching videos or answering questions are              

logged in the course’s database. OLI courses, such as the one used in this study, are often intended                  

to be used asynchronously without an instructor. Prior research has compared student learning from              

a stand-alone OLI course on introductory statistics to face-to-face equivalent instruction, and found             

that students showed increased learning gains in half the time as compared to students with the                

traditional face-to-face instruction (Lovett, Meyer, & Thille, 2008). While this system has been             

proven to be effective, no studies around it have measured the transfer of the content to future                 

in-person courses. This is true for many online learning environments, while they are proven              

effective for learning, studies do not look at their transfer and retention when the knowledge is                

required for a follow-up in-person course, such as a traditional undergraduate one. 

2.2 Data Description 

Our predictor data came from the Discrete Math Primer (DMP) OLI course, which was completed by                

incoming freshmen at Carnegie Mellon University during the summer of 2016. This course serves as               

a prerequisite for core computer science courses, providing students with a foundation for key              

concepts in the field, such as the notion of data structures. The course is divided into three units —                   

Logic, Sets, and Functions, with which students interacted in a sequential manner. The final grades               

from the follow-up in-person course, Mathematical Foundations for Computer Science (MFCS), were            

used as our predictive variable. The final grade was calculated as a percent out of 100. This course                  

was taken by the same students the following semester during Fall 2016 and was taught in a                 

traditional in-person lecture and recitation format. From the syllabus of the follow-up course, proofs              

is one of the five listed key topics, which makes use of the Logic unit. Functions and Sets is another                    
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key topic of the five listed covered in the follow-up course, which takes a deeper dive on the                  

concepts than what is covered by the online DMP course. Performance in this online course is                

appropriate for predicting the performance on the follow-up as it directly builds upon the topics               

covered in the DMP course and is thusly a prerequisite of the MFCP course.  

Our dataset consists of 34,999 transactions from 139 students. The transactions consist of             

student actions in the OLI course, such as selecting an answer in a multiple-choice question,               

requesting a hint, and submitting an answer. These data entries detail UI events, question              

correctness, time on task, performance on checkpoints, and hints where relevant. In total, the data               

spans 198.5 hours of student activity in the course. The course consists of twenty three pages, not                 

including the three quizzes, and is comparable in length to a textbook page. Each page consists of                 

instructional text that is interspersed with low-stakes questions that give detailed feedback intended             

to foster learning. The Logic unit consists of forty-three questions, Sets has twenty-three, and              

Functions consists of fifty-one for a total of 106 questions we had student data from in the course.                  

Table 1 shows the variables that we used for our analysis.  

Table 1: A description of each variable used in the dataset 

Variable Description 

ID A hashed string corresponding to the student 

Duration 
The time, in seconds, a student interacted with an element, such as a             

question 

Student Response Type 
Denotes the student’s action, whether it be a hint request, question           

attempt, page view, or saving their question answer 

Level (Module) States which of the three units the transaction came from 

Step Name 
The unique name for the part(s) of a problem, each step contains an             

opportunity for a correct or incorrect response 

Outcome If applicable, whether the student got the problem correct or incorrect 

Attempt at Step Denotes the amount a student has attempted a given question step 

Skill The label for the skill associated with the particular problem step 

2.3 Feature Engineering 

We performed feature engineering to construct seven key predictors. Prior research has shown that              

students who perform at or below a failing grade level in an online course tend to have fewer                  

interactions (Davies & Graff, 2005). Each entry in our dataset represents a student transaction, so we                

were able to count the numbers of transactions each individual student made through the course.               

Once the data was filtered on a per-student transaction basis, the total duration each transaction               

took could be summed to generate a student’s total duration in seconds within the course. 

As previously described, the course is divided into three units — Logic, Sets, and Functions.               

Each of these concludes with a summative quiz covering the core material covered in the unit. Each                 
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quiz consisted of eight questions, and students were only allowed a single attempt per quiz question.                

The grade for each quiz was calculated by summing the number of correct questions out of eight                 

possible points. This yielded three of our seven analyzed features, which were the final quiz grades                

for each unit. 

For each student transaction that details the submission of a question, the OLI platform              

denotes if it is the student’s first attempt at the question. Subsequently if they attempted the                

problem again, such as changing their answer and submitting, the following entry for the attempt               

would be marked with a two in the corresponding column. Using this attempt count in conjunction                

with the outcome, correct or incorrect of the problem attempt, we are able to determine the                

accuracy of a student’s overall attempts as a percentage. Knowing the student’s number of attempts               

at a question and its outcome also allows us to calculate their accuracy on the last attempt, our final                   

feature. In total, this gives us the following seven features: 

1. Number of transactions

2. Duration in course

3. Logic quiz grades

4. Sets quiz grade

5. Functions quiz grade

6. Accuracy of overall attempts

7. Accuracy on last attempt

2.4 Random Forest & Linear Regression 

We used random forest model, implemented in the R programming language, to predict final grade               

performance in the follow-up in-person MFCS course. Random forest modeling is a classification and              

regression algorithm that estimates the amount of increase in mean squared error for each variable,               

when it is replaced by a set of random values. This provided us with a weighting of how important                   

each of our seven defined features is in the prediction of the final grade. Following this, we used                  

linear regression to predict the nature of the relationship of the predictor variables from our model                

and to estimate what percentage of variation in final grades was explained by each predictor               

variable. 

3 RESULTS 

The results of the random forest modeling indicated the following variables contributed to the              

increase in mean square error: total number of transactions, quiz grades for the Sets unit, quiz frade                 

for the Functions unit, number of correct and incorrect attempts, and the duration of time spent in                 

the course, see Figure 1.  

A simple linear regression analysis was conducted to predict final grade based on the              

variables found to be associated with an increase in the mean square error. A significant regression                

equation was found, R2 = .43, F(7,120) = 12.55, p < .001. Results indicated that the accuracy scores                  

on the Sets (t = 2.25, p = .02) and Functions quizzes (t = 2.10, p = .037) had a significant positive                      

association with final grade. The total number of transactions was negatively correlated with final              

grade (t = -3.07, p = .002). The regression performed on last attempt correct and incorrect was found                  

to not be significant. It is interesting to note that while only the scores on the Functions and Sets                   

quizzes were positively associated with the final grade on the subsequent course, it was not because                
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students were already performing at ceiling levels on the Logic module. Mean scores for the Logic                

and Sets quizzes were 78% and 77% respectively, whereas mean for the Functions quiz was               

significantly lower at 55%. 

Figure 1: Variable importance plot using random forest modeling 

4 DISCUSSION 

In this paper, we describe some preliminary results on how students’ performance in an online               

course can be used to predict their learning and performance in a future course. We found that                 

students’ performance on two of the three modules in the online OLI course significantly predicted               

final grades on the subsequent in-person course. The predictive power of the Sets and Functions               

units, but not the Logic unit, may be explained by the sequence they occur in for both the online                   

DMP course and then in the in-person MFCP course. In the follow-up course, the Proofs section uses                 

subject matter from the Logic unit, and occurs early on in the course. It may be the case that this is a                      

minor section and not a heavily contributing portion of their final grade, since it is the very first part.                   

However, Sets and Functions occurs in the middle of the follow-up course and is taught together.                

Since these two units are taught together in the follow-up course, it is likely that a student who did                   

not perform well on these two units from the online DMP course will lack the required prior                 

knowledge for this topic and vice-versa. Additionally as it falls in the middle of the course, it might be                   

the case that midterms, an often large portion of a student’s grade, occurs during this unit and                 

contains a sizeable portion of material from Sets and Functions. 

We found the total number of transactions was found to be negatively associated with final               

grades in the subsequent course. This is in contrast with prior work that showed that fewer                

interactions with the online learning system were associated with less learning (Rovai & Barnum,              

2007). The system the course is implemented in, OLI, is intended for students to practice on                

low-stakes activities, not necessarily getting the questions right on the first attempt. However, if              

students read the accompanying instructional materials on the page, they should be able to answer               

the questions on the first try. This result of more transactions correlating to a lower grade could be                  

attributed to guess-and-check behavior, where students omit reading the materials and attempt the             

questions until they achieve the correct answer. Attempting the problems in this system and many               

others is not technically discouraged, since they contain rich feedback that serves as an instructional               

moment. Unfortunately many students do not always read the feedback and believe they             

understand the content once the correct answer is achieved, even if it is by guessing. 

Creative Commons License, Attribution - NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0) 

304



Companion Proceedings 9 th International Conference on Learning Analytics & Knowledge (LAK19) 

Next, the evidence that the online discrete math primer helped students’ performance in the              

subsequent course is only correlational. There are many factors that can come into play between the                

completion of the online course and conclusion of the follow-up one. However, these results              

demonstrate how online learning environments may make use of data they are already collecting,              

quiz scores and formative assessment answers, in a way that feed into a greater predictive system.                

Predictive modeling is a growing research area with many resulting systems suggesting interventions             

for at-risk students, based on the input data (Roblyer & Davis, 2008; Essa & Ayad, 2012). Such                 

systems or similar methods could be integrated into the OLI platform, make use of this data, and                 

provide interventions to the students that might fall into the at-risk category.  

In sum, predicting future performance using student interaction data in an online course is a               

promising area of research, and should continue to be explored in the educational data mining               

literature. The insights gained will help improve student learning not only as measured by pre and                

post tests within the course, but will ensure that robust learning that prepares students for future                

learning opportunities is supported. 

5 FUTURE WORK

As predictive modeling research continues and integrates with more systems, we hope to find trends               

across platforms that indicate a set of features that are continuously correlational. Future work in               

this area could also focus more on not only proving the effectiveness of the system for immediate                 

learning, but for robust learning that transfers to later contexts were it is then prior knowledge.                

Looking at the transfer of this material from an online course context to an in-person one, like in this                   

study, can help to indicate what makes online learning effective or not. With so many instructional                

materials and services online that claim to be effective, gauging the long term retention of what they                 

teach is key to them truly being successful for learning. Additionally, future work in CS education                

should also consider courses in the curriculum that do not strictly rely on programming, such as this                 

studies DMP course. Mathematical foundations are essential in certain aspects of programming and             

computational thinking, yet many transfer studies focus solely on programming contexts.  

One limitation of the present work is that we did not have a measure of students’ incoming                 

mastery of the content of the DMP course. We are currently replicating the study with a new cohort                  

of students, who took a short pretest at the beginning of the course, and the quizzes for each                  

module included three items from the pretest to serve as a posttest. Analyses of pre and posttests                 

will give a clearer window into what students learned from the online course, instead of simply                

measuring their performance on a test. We suggest future work in this area do the same, providing                 

students with a concrete pretest and posttest to effectively evaluate their learning from the online               

materials. To further obtain a stronger causal evidence for its efficacy, a randomized controlled              

experiment, where one group of students completes the OLI course, whereas another completes a              

comparable activity of similar duration would be recommended. 
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