An Instructor Dashboard for Real-Time Analytics in
Interactive Programming Assignments

Nicholas Diana
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

ndiana@cmu.edu

Shuchi Grover
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025
shuchi.grover@sri.com

ABSTRACT

Many introductory programming environments generate a
large amount of log data, but making insights from these
data accessible to instructors remains a challenge. This
research demonstrates that student outcomes can be accu-
rately predicted from student program states at various time
points throughout the course, and integrates the resulting
predictive models into an instructor dashboard. The effec-
tiveness of the dashboard is evaluated by measuring how
well the dashboard analytics correctly suggest that the in-
structor help students classified as most in need. Finally,
we describe a method of matching low-performing students
with high-performing peer tutors, and show that the inclu-
sion of peer tutors not only increases the amount of help
given, but the consistency of help availability as well.

CCS Concepts

eApplied computing — Education; Interactive learning
environments;

Keywords

Introductory Programming; Learning Analytics; Machine
Learning; Dashboards; Peer Tutors

1. INTRODUCTION

Recent advances in learning management systems and their
ability to collect and display information has been shown to
aid student learning. The learning analytics embedded in
dashboards can provide instructors with a wealth of infor-
mation about their students, however much of the research
in this area has been focused on online courses and “next

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

LAK ’17, March 13-17, 2017, Vancouver, BC, Canada
© 2017 ACM. ISBN 978-1-4503-4870-6/17/03. .. $15.00
DOL http://dx.doi.org/10.1145/3027385.3027441

Michael Eagle
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

meagle@cs.cmu.edu

Marie Bienkowski
SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025 . .
marie.bienkowski@sri.com satabdi.basu@sri.com

John Stamper
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

john@stamper.org
Satabdi Basu

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

class” dashboards rather than traditional, offline courses and
real-time dashboards [16], [17], [10]. Furthermore, even in
domains rich with data, such as introductory programming,
there is often little to no infrastructure in place to make
insights gleaned from these data available to instructors.

Unlike most other domains, computer science education
is almost always (but not always) mediated by computers.
A number of development environments used in computer
science education collect log files of student actions. For
example, systems such as BlueJ [7], CloudCoder [14] (used
in more open ended programming environments), and Alice
[18], which we use in this research, generate log data. De-
spite this relative abundance of data, to date none of these
systems integrate an instructor dashboard to take advantage
of log use.

One successful use of analytics applied to student logs is
providing students direct feedback in the form of hints or
help messages. This forms the basis of many adaptive sys-
tems such as intelligent tutors [9] that automatically create
feedback [15]. Some research has explored automatically ap-
plying these techniques in program representations [8], [12]
as well.

Unfortunately, we cannot always count on the students
who need help to ask for it. Student performance goals, in-
structor attitudes, and classroom climate can result in dif-
ferent patterns of help-seeking behavior [5]. For example,
students concerned with social status tend to exhibit help-
avoidance [13].

A potential alternative to relying on students to ask for
help themselves is to train a model to predict when a student
needs help and present this information to an instructor.
For this to be possible, first the data need to be formatted
such that at any point throughout the course the student’s
progress can be represented. Second, it must be possible to
then make accurate predictions of student outcomes from
these data. Finally, these predictions can be combined with
some assumptions about their use to evaluate how well they
aid in choosing students who are most in need of help. The
current paper uses a dataset collected in the aforementioned
Alice introductory programming environment to explore the
possibility of providing real-time insights derived from raw
programming log data.

2. RELATED WORK

The assessment used in the current study was originally
created by Werner and colleagues [18] as a way to measure
computational thinking skills in middle school students. The
assessment, referred to as the ”"Fairy Assessment” (because
the characters used are fairies), consists of three tasks de-
signed to test comprehension, design, and complex problem
solving. The authors found that while scores were not cor-
related with gender, age, and attendance, they did correlate
with parent education, parent computer use, interest in tak-
ing a computer science class, confidence with computers,
and attitude toward computers [18]. The authors also found
that content knowledge of the programming environment
(Alice) measured at post-survey was positively correlated
with scores on the Fairy Assessment, which they argue is
evidence of construct validity.

Two key features of the Werner [18] dataset are the human-
graded rubric scores generated for each student and the col-
lection of log data. The researchers graded each of the three
tasks along a series of task metrics. Those task metrics
are totaled to produce the Task Total, and then the Task
Totals are aggregated to give the Aggregated Total. The re-
searchers also utilized a seldom used logging feature present
in Alice to capture student actions at each step. The rubric
scores served as the basis for their various correlational anal-
yses, but analysis of the log data was largely left for future
work.

We revisit the Fairy Assessment dataset to explore what
insights can be gained from combining the low-level log data
with the human graded rubric scores, and how those data-
driven insights can be made accessible to instructors in real-
time. We hypothesized that, by using a supervised machine
learning algorithm, we will be able to accurately predict
Task Totals and Aggregated Totals. We then integrated
these predictive models into a real-time instructor dash-
board. We evaluated our dashboard by simulating how a
teacher might use it to identify students who need help, and
measuring how accurately our model identifies those stu-
dents. Finally, to increase the number of students who were
able to receive help, we generated a network graph of the
student data to test a method of peer tutor matching.

3. METHOD AND MATERIALS

Our experiment consisted generally of three stages. First,
we converted the raw log data into a series of code-states.
Next, we trained a series of predictive models to predict
various student grades. Finally, we integrated these predic-
tive models into an instructor dashboard, and estimated the
usefulness of the dashboard using a classroom replay.

3.1 Data

The data were collected by Werner and her colleagues [18]
as part of a two year project exploring the impact of game
design and programming on the development of computer
science skills. The students were asked to complete an as-
sessment task called the “Fairy Assessment,” in which stu-
dents are required to fix several errors in a malfunctioning
program. A key feature of this dataset is the way in which
it was graded. Each student’s program was hand-graded by
two experimenters along a 24 point rubric. These grades
serve as the ground truth that we can use to both train and
evaluate our models. We used a subset of the original data
(N=227), excluding students who worked on the assessment

more than 5 minutes longer than the 30 minutes allotted or
with missing, ambiguous, or incorrect grade or log data.

Log File %

Code State 1

q

Code State 3

Figure 1: Visual representation of the conversion
process from log files to cumulative code-states.

The raw log data generated by Alice are simply a sequen-
tial list of software actions in a text log file, and do not
accurately capture the structure of the final program. To
make the log data more amenable to analysis, we imple-
mented a two-step data transformation. The first step is
simply reformatting the mostly unreadable, raw list of log
entries into a readable JSON format. This step was not sim-
ply for aesthetics; it allowed us to visually inspect the log
data and make meaning from it, which helped us identify
some important characteristics. Two key characteristics are
the temporal and structural relationships between log en-
tries. A single user action in Alice may result in multiple
log file entries, and determining where one action ends and
another begins is difficult for both humans and computers.
Similarly, most log entries contain information about where
this entry happens in Alice’s internal data structure, but the
exact structural relationship is often difficult to determine
due to the limited detail present in the logging system.

To empirically define these temporal and structural rela-
tionships more precisely, we created a small, locally-hosted
Python server to continually monitor the log file of an active
instance of Alice. Each time we performed some single ac-
tion inside Alice, the server would detect a change in the log
file, reformat the new data, and output the list of log entries
associated with that single user action. That list could then
be condensed into a single, meaningful entry. The result
of this exploration is a principled method for transforming
complex, sequential log data into a meaningful and succinct
data structure that mirrors the internal data structure of
Alice. We refer to the resulting data structure as a ”code-
state.”

Representing the log data as code-states also allowed us
to shift our focus from the student’s product (i.e., the fi-
nal program) to the student’s process (i.e., each student ac-
tion). Generating the student’s set of actions is done using
the same data transformation; we simply limit the amount
of data to transform. For example, to generate the student’s
first code-state, we only transform the log entries that cor-
respond to the student’s first action. Code-states are cu-
mulative, so to generate the second code-state we transform
the log entries that correspond to the student’s first and sec-
ond actions, and so on. We generated a code-state for each
action, for each student.

3.2 Building Predictive Models

The human-graded scores allowed us to train a supervised
machine learning algorithm. First, we tokenized the final
code-states of each student to generate a vocabulary of 707
tokens. We then counted the number of times each token
occurs in each state, and used these token counts as features
for our model. We used this vocabulary created from the
final states to generate a matrix of token counts for all other
codes-states. This ensured that the training data (i.e., final
states) and the testing data (i.e., states prior to final states)
used the same set of features.

Each reported value is the average of a 10 fold Shuffle-
Split Cross-Validation. For each fold, we chose a random,
classroom-sized sample of students (n=30) to use in the test-
ing set. The remaining 197 students were assigned to the
training set. We then fit a ridge regression model on the
final states of every user in the training set. Because we
were interested in how the model performs over time, we
generated 30 time points (1 per minute) at which to test
the predictive ability of the model. At each time point, we
selected only the most recent code-state for each student in
the testing set, and used the fitted model to predict Task
Totals and Aggregated Totals for each student. We then
compared these predicted scores to the known scores to pro-
duce the Root Mean Square Error (RMSE) for that time
point. The python package scikit-learn was used for both
cross-validation and ridge regression [11].

0.9 —Task1_Total
0.8 Task2_Total
07 Task3_Total
0.6 —Aggregated_Total

0.5

0.4 \
03 ~\/\/—‘—‘\\ ﬂﬂﬂﬂﬂ - e — === -

0.2
0.1

Standardized RMSE

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (minutes)

Figure 2: RMSEs of task and aggregated total pre-
dictions over time. Each model seems to stabilize at
approximately 10 minutes into the course.

3.3 Instructor Dashboard

3.3.1 Classroom Replay

In order to evaluate the potential useful benefits of our
predictive models in a typical lab-based classroom environ-
ment, we used the corpus of previously collected log data
to create a classroom replay. Each student is assumed to
start the assignment at the same time, and as the course
progresses, their data are streamed into the live dashboard.
The instructor can then monitor what the student’s pre-
dicted task and aggregated totals are at any point in the
course, and how they change over time.

3.3.2 Dashboard Components

Figure 3 highlights the important components of the dash-
board. First, the Timeline (indicated by letter A. on the fig-
ure) displays how much time has past since the start of the
class. Users can either drag the slider to a specific time-point
or run the simulation automatically by choosing a playback
speed. Figure 7 shows the dashboard progressed to 12 min-
utes into the class.

Below the Timeline is the Class Summary (letter B. on
the figure). The Fairy Assessment consists of three distinct
tasks. This component utilizes the predictions of task met-
rics to estimate the proportion of students who are currently
or have already worked on each task. If the model gener-
ates a prediction of greater than 50% for a particular metric,
then we guess that that student is or has worked on the task
that corresponds to that metric.

Below the Class Summary is a visual representation of the
classroom (indicated by letter C. on the figure). Here each
circle represents a student in the class. In the screenshot
shown, the color of each student corresponds to their pre-
dicted Aggregated Total, but the coloring can be changed
to correspond to evaluation measures such as model accu-
racy and true positive rate by selecting one of the buttons
listed above the students. These evaluation measures, as
well as others in the dashboard, are displayed in gray text
to indicate that these features are only available because the
software has access to the true scores for comparison. An
icon displayed within a student’s circle indicates the student
has been classified as belonging to one of three states. First,
a caution sign icon indicates a student who has the lowest
predicted score. Second, a clock icon indicates a student that
has been idle for at least five minutes. Finally, a graduation
cap icon indicates a student that has been idle for at least
five minutes, but who also has a high predicted Aggregated
Total (above a 93% or 28 out of 30 points). We classify these
students as having finished the assessment. These icons can
be seen in use in Figure 7.

Selecting a student will provide more detailed information
about that student in the right hand panel (letter D. in the
figure). This panel shows the predicted total score for the
selected student and the actual total score for comparison.
Also shown are student specific model evaluation measures
and the selected student’s current and former code-states.

3.3.3 Evaluating the Instructor Dashboard

We estimated the potential value of the instructor dash-
board by replaying classroom data and providing some as-
sumptions about how the instructor might use the dash-
board. First, we assume that the instructor always wishes
to help a student that needs help (i.e., a student who would
do poorly without help). Second, we assume that the in-
structor helps each student for five minutes. This number is
fairly arbitrary and merely dictates the number of students
helped in the 30 minute class period. Third, once a student
is helped, we exclude that student from the pool of possible
students who could receive help. Finally, we assume that
the students most in need of help are the students whose fi-
nal grades (i.e., Aggregated Totals) are the lowest. Provided
these assumptions, we can estimate how well our model can
aid this instructor in identifying the students she wishes to
help.

Timeline
Time Since Start: 0.0min

Selected Student: 3010
Predicted Total Score: 0.20
Actual Total Score: 1.00

Play Simulation: 10x 100x 1000x Stop

Class Summary
Task 1 63%
Task 2 9%
Task 3 6%

Classroom (n=30)

Predicted Score Accuracy True Positive Rate

A Y
~7

A A

A A

Avg. Model Performance: 0.81
Avg. True Positive Rate: 0.19
Lowest PScore: 0.00

Accuracy: 0.63
TP Rate: 0.11

Code State
1{
“children”s [

“children": [
{

'_unnameds__*,
5",

o together"
"id": "Beginning"

"id": "World"
¥

Previous States
Key

. selected student

A lowest pred. score

® | idle student

. finished student
low [high

Figure 3: Various components of the instructor dashboard. A. Timeline - Classroom replay controls, B.
Class Summary - General estimates of student progress, C. Classroom - Visual representation of students, D.
Selected Student - Student specific predictions and model evaluation measures as well as current and former

code-states

We evaluate how well our model is selecting the correct
students, the Help Index (HI), at time ¢ as:
X—-|A:—B
HI, = % (1)
Where X is the highest number of points possible, A; is the
lowest true score at time ¢, and B; is the lowest predicted
score at time ¢.

3.4 Peer Tutor Matching

While a measure like Help Index can aid in directing in-
structors to students who need assistance, it does little to
address the primary resource limitation: instructor time.
Even assuming we find a perfect model, if the instructor
spends 5 minutes helping each student, only 6 students can
possibly be helped in a 30 minute class period. Furthermore,
the instructor’s time does not scale with the size of the class,
making this limitation especially troubling for large classes.

To increase the percentage of students who are able to
receive help, we propose utilizing high performing students
as peer tutors. A basic (and typical) approach to picking
peer tutors consists of simply choosing a small group high
performing students. Each one of these students is gener-
ally assigned to a low performing student randomly, with
the two students sharing nothing except for the fact that
they are both students. In a fairly open-ended environment
like Alice, multiple solutions can be equally correct without
sharing any similar features. Therefore, randomly match-
ing a student with a tutor who has a different approach to
the problem at best is inefficient and at worst may result in
the tutor suggesting the student start over. Having access
to student log data allows us to test a peer tutor matching
method that is more precise than random assignment.

Figure 4: Interaction Network for the Fairy Assess-
ment task.

We used a network representation of student work to mea-
sure student approach similarity. Interaction networks rep-
resent student interactions with the Alice environment as
a complex network; vertices represent snapshots of the en-
vironment and edges represent the transitions that occur
when students edit the Alice code. Eagle et al., expanded
on the theoretical framework of interaction networks, explor-
ing their structure and the processes that generate them
[2]. Hint Factory from Stamper et al., uses an interac-
tion network created from previous student data to train a
Markov Decision Process (MDP) of student problem-solving
approaches to serve as a domain model for automatic hint
generation [15]. Hint factory has been applied across do-
mains [3, 4, 6], and been shown to increase student retention
in tutors [15].

The network was constructed using igraph [1], a free graph-
ing library for network analysis. Each node of the graph
represents a code state. Each edge represents a transition
from one code-state to another. The network was popu-
lated by looping over each user’s code states, linking them
together sequentially with state transitions. If a code state
identically matched another code state already represented
as a node in the graph, that code state was not added, and
a state transition would be drawn from the already present
node to the user’s next code state. A visualization of this
network is shown in Figure 4.

At each time point ¢, we select the students in the class
whose predicted final score is in the bottom 25% of all stu-
dents. This represents the pool of low-performing students
who we operationally define as needing assistance. From
this pool, we remove students who either have already been
helped or are currently being helped. Then we try to as-
sign the remaining students tutors. This is done by select-
ing students from the class whose predicted final score is
in the top 25% (though these thresholds are arbitrary and
can be adjusted). These high-performing students make
up our pool of potential tutors. For each unhelped low-
performing student, we use the network graph to search for
a node that is the most recent common ancestor to both
the low-performing student and one of our high-performing
potential tutors. These nodes not only represent a common-
ground that both students have passed through, but also a
potentially crucial decision-point in the task. In other words,
from this shared point, one student goes on to do well, while
the other goes on to do poorly. By matching low-performing
students to tutors using these common ancestor nodes, we
are 1) giving those students an opportunity to take a differ-
ent path, and 2) reducing the probability that the tutor will
simply ask the student to start over — saving not only time,
but the value of the work the student has already done.

4. RESULTS

4.1 Student Performance Predictions

We were able to accurately predict the scores for all three
tasks in the Fairy Assessment. Task 1 produced the best
model (RMSE=0.384), followed by Task 2 (RMSE=0.500),
and Task 3 (RMSE=0.556). Our model predicting the aggre-
gated total score performed the best overall (RMSE=0.367).

To examine how the model changes over time, we gener-
ated a new model for every minute of the 30 minute course.
Results from this analysis can be seen in Figure 2. As ex-
pected we see the models generally do worse at the beginning

02000
O]

’
O0Be

Figure 5: A selected low-performing student (black
dotted outline) and a suggested peer tutor (red dot-
ted outline).

%09
=
X os
=
% 0.7
4 LTS
o« 08 LPS
5
205 —HI
g~
E 04 e RMSE
Q S~
= .
- 0.3 Sea
@ ~
N o T e mTT
T 02
©
2
§ 01
w

0

13 5 7 9 11 13 15 17 19 21 23 25 27 29

Time (minutes)

Figure 6: Help Index, RMSE, Lowest Predicted
Score (LPS), and Lowest True Score (LTS) over
time. Note that the Help Index (HI) does well over-
all, but decreases slightly over time despite a de-
creasing RMSE as well. This may be explained by
an increasing divergence between the Lowest True
Score and the Lowest Predicted Score.

of the class period when data is scarce. However, the models
seem to stabilize at around the 10 minute mark. Interest-
ingly, we see a second pronounced dip in the Task 3 model
around 16-18 minutes into the course. This may be due to
several factors (e.g., diminished student activity), but may
indicate the point at which most students begin working on
Task 3. It is important to remember that these tasks are
cumulative, so we might expect to see these temporal mark-
ers. The aggregated total model follows a similar, though
less pronounced, pattern.

4.2 Predicting Help Index

Figure 6 shows Help Index over time. On average, the
model is fairly accurate at choosing the student with the
lowest total score (average HI = 0.875). However, the HI
also trends down over time. This may be due to a number of
reasons. One possible explanation is that as low-performing
students are helped (and consequentially excluded from the
pool of students who can receive help), the lowest true score
inches upwards. The model may be better at distinguish-
ing no points at all (a 0%) from a small number of points,
than it is at distinguishing a small number of points from
a slightly higher small number of points. Another possible

Timeline

Time Since Start: 12.8min

Selected Student: 3010

Predicted Total Score: 1.00
Actual Total Score: 1.00

. Accuracy: 1.00
TP Rate: 1.00
Play Simulation: 10x 100x 1000x Stop
Code State

Class Summary

Classroom (n=30)

Predicted Score True Positive Rate

0000¢
20004 D00
000 006¢

Avg. Model Performance: 0.89
Avg. True Positive Rate: 0.63
Lowest PScore: 0.00

Accuracy

00000

"children": [

"children": [

. "Do together”
Y

"children": [

Previous States
Key

. selected student

A lowest pred. score

©® | idle student

. finished student
low [high

Figure 7: The instructor dashboard progressed to approximately halfway through the course. Note that the
Class Summary now shows that the majority of students are working on the third task. The Classroom view
shows less students in need of help, and more students that are idle or finished. Finally, the Selected Student
pane now shows many more previous code-states than in Figure 3.

explanation is that, over time, the model has a more difficult
time guessing the lowest scoring student as the code-states
become more and more complex. Evidence of this can be
seen in Figure 6 where the lowest predicted score (LPS in
the figure) seems to trend upwards sooner than the lowest
true score (LTS in the figure).

4.3 Peer Tutor Impact

In addition to evaluating how well our model can iden-
tify low-performing students, we were also interested in in-
creasing the number of low-performing students that could
be helped at any given timepoint. To this end, we imple-
mented a peer tutor matching system that uses a network
graph of all student code-states to match low-performing
students with high-performing students who share a com-
mon ancestor code-state. If multiple potential tutors are
found, we chose the tutor whose common ancestor is the
shortest distance away from the student’s current code-state.
The average distance from a low-performing student’s cur-
rent code-state to the shared common ancestor code-state
was 30.73 steps (SD=13.81).

Figure 8 shows the percentage of students classified as
low-performing, high-performing, or tutors over time. The
percentage of students identified as low-performing is very
high at the beginning of the class period. This is most likely
due to the scarcity of data at that time. As the students’
code-states become more complex (and more distinguish-
able), we see a sharp drop in low-performing students and a
steady increase in high-performing students. Interestingly,
though the number of high-performing students continues to
rise over the interval between 5 and 23 minutes, the num-

ber of those students who are selected to be tutors does not
follow the same trajectory.

Figure 9 shows the percentage of low-performing students
helped over time by the instructor, the peer tutors, and over-
all. We see that, while peer tutors contribute to the number
of students helped, the instructor contributes more. By the
end of the class period, the instructor had helped 20.81%
more students than the peer tutors.

While peer tutors may not be as effective as the instruc-
tor at helping a large percentage of low-performing students,
they may offer another benefit: availability. Our imposed
5 minutes of help” assumption can be seen clearly (as ex-
pected) in Figure 9’s blue, Helped by Instructor line, but
also is evident, to a lesser extent, in the other two lines
as well. However, evidence of our ”5 minute” assumption
is least prominent in the Helped by Tutors line, suggesting
that different students are becoming available as tutors as
previously selected tutors are still working with their stu-
dents. The impact of this improved availability of help can
be most clearly seen in the steady increase of the Total %
Helped line. Without peer tutors, we would see stretches of
time where only one student is helped, leaving other low-
performing students waiting. Peer tutors provide a way to
supplement the more efficient, less constant instructor help
with a more steady stream of availability.

S. DISCUSSION

The results of the classroom replay evaluation are promis-
ing. Our grade prediction model starts off fairly accurate
and increases in accuracy until leveling off after about 10

0.9
e %% High Perf.

0.8
% Tutors

0.7

% Low Perf.
0.6
0.5

0.4

% of Students in Class

0.3
0.2

0.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (minutes)

Figure 8: The percentage of the class classified
as low-performing students, high-performing stu-
dents, or tutors. Note: tutors are a subset of high-
performing students.

0.9

08 e Total % Helped

0.7 = = = Helped by Instructor

0.6 Helped by Tutors
0.5
0.4

0.3

% of Low Perf. Students Beung Helped

0.2

0.1

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29
Time (minutes)

Figure 9: Percentage of low-performing students
who have been helped (or are receiving help) over
time. The dashed blue line represents the percent-
age of low-performing students helped by the in-
structor. The dashed orange line represents the per-
centage of low-performing students helped by peer
tutors. The solid black line is the total percentage
of low-performing students helped.

minutes. Our predictive model was also successful at ac-
curately identifying students who are predicted to have low
scores. The Help Index metric shows that the dashboard can
consistently identify students who are the most in need of
assistance. Finally, we were able to increase the percentage
of students receiving help and the consistency with which
students received help by matching low-performing students
with high-performing peer tutors who have similar program
states.

The “intervention strategy” we used in this evaluation,
while simple, succeeds in demonstrating that we can identify
students who are most in danger of failing the assignment,
and that we can identify these students relatively early. In a
real classroom, instructors using the dashboard will likely
have interruptions from help-seeking students, and other
real-world events that could result in selecting a different
student for one-on-one intervention. Additionally, an expert
instructor may not need the grade prediction portion of the
dashboard, however it might still prove useful for any teach-
ing assistants available. In addition to the grade predictions,
the dashboard also provides a high level view of the current
progress of the entire classroom including which tasks stu-
dents are currently working on and how many students are
sitting idle. These insights would not be possible otherwise.

The current Alice environment does not support this type
of real-time logging, however the work we have presented
here provides a good preliminary look into the potential
benefits of implementing such as system. It is important
to explore interventions, such as this dashboard, thoroughly
before placing them into a classroom environment, and the
classroom replay presented here is one way of doing that.
The results of our study provide evidence that the imple-
mentation of real-time logging could have an impact in a
real classroom.

6. CONCLUSIONS

In this paper, we demonstrate that task and aggregated
totals from an introductory programming assessment can
be predicted by training a supervised machine learning al-
gorithm on human-graded rubric scores. These predictions
were integrated into an instructor dashboard. Finally, the
ability of this dashboard to successfully identify the students
who might most benefit from help was evaluated by simu-
lating an instructor’s interaction with the dashboard. These
results suggest that, given an appropriate representation of
the student’s program state coupled with a rich set of train-
ing data, a machine learning model can accurately predict
student scores. These predictions have a multitude of ap-
plications. This paper explored identifying low-scoring stu-
dents, but these predictions may also be useful in evaluating
peer-grading or identifying students who have completed the
assessment early.

7. FUTURE WORK

One potential way to increase the number of students
helped is by clustering similar low-performing students to-
gether. Future work will focus on identifying clusters of
students who may benefit from the same intervention.

Another potential way to increase the number of students
helped is to provide intelligent non-human help. We hope to
utilize the accuracy of our predictive models to implement
automatically generated feedback for the students.

8.

ACKNOWLEDGMENTS

This research was supported by the National Science Foun-
dation (NSF grant award number 1522990).

9.
1]

2]

7]

8]

[11]

[12]

[13]

[14]

REFERENCES
G. Csardi and T. Nepusz. The igraph software package

for complex network research. InterJournal, Complex
Systems, 1695(5):1-9, 2006.

M. Eagle, D. Hicks, B. Peddycord, III, and T. Barnes.
Exploring networks of problem-solving interactions. In
Proceedings of the Fifth International Conference on
Learning Analytics And Knowledge, LAK 15, 21-30,
New York, NY, USA, 2015. ACM.

M. Eagle, M. W. Johnson, T. Barnes, and A. K.
Boyce. Exploring player behavior with visual
analytics. In FDG, 2013.

D. Fossati, B. Di Eugenio, S. Ohlsson, C. W. Brown,
L. Chen, and D. G. Cosejo. I learn from you, you learn
from me: How to make ilist learn from students. In
AIED, 491-498, 2009.

J. M. Furner and A. Gonzalez-DeHass. How do
students’ mastery and performance goals relate to
math anxiety. Furasia Journal of Mathematics,
Science & Technology Education, 7(4):227-242, 2011.
A. Hicks, B. Peddycord III, and T. Barnes. Building
games to learn from their players: Generating hints in
a serious game. In Intelligent Tutoring Systems, 312—
317. Springer, 2014.

M. C. Jadud. A first look at novice compilation
behaviour using bluej. Computer Science Education,
15(1):25-40, 2005.

W. Jin, T. Barnes, J. Stamper, M. J. Eagle, M. W.
Johnson, and L. Lehmann. Program representation for
automatic hint generation for a data-driven novice
programming tutor. In Intelligent Tutoring Systems,
304-309. Springer, 2012.

K. R. Koedinger, J. R. Anderson, W. H. Hadley,

M. A. Mark, et al. Intelligent tutoring goes to school
in the big city. International Journal of Artificial
Intelligence in Education (IJAIED), 8:30-43, 1997.
M. Lovett, O. Meyer, and C. Thille. Jime-the open
learning initiative: Measuring the effectiveness of the
oli statistics course in accelerating student learning.
Journal of Interactive Media in Education,
2008(1):1-18, 2008.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,

R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and

E. Duchesnay. Scikit-learn: Machine learning in
Python. Journal of Machine Learning Research,
12:2825-2830, 2011.

K. Rivers and K. R. Koedinger. Automatic generation
of programming feedback: A data-driven approach. In
The First Workshop on Al-supported Education for
Computer Science (AIEDCS 2013), pages 50-59, 2013.
A. M. Ryan, L. Hicks, and C. Midgley. Social goals,
academic goals, and avoiding seeking help in the
classroom. The Journal of Farly Adolescence,
17(2):152-171, 1997.

J. Spacco, D. Fossati, J. Stamper, and K. Rivers.
Towards improving programming habits to create

(15]

(16]

(17]

(18]

better computer science course outcomes. In
Proceedings of the 18th ACM conference on
Innovation and technology in computer science
education, 243-248. ACM, 2013.

J. Stamper, M. Eagle, T. Barnes, and M. Croy.
Experimental evaluation of automatic hint generation
for a logic tutor. International Journal of Artificial
Intelligence in Education (IJAIED), 22(1):3-18, 2013.
K. Verbert, E. Duval, J. Klerkx, S. Govaerts, and J. L.
Santos. Learning analytics dashboard applications.
American Behavioral Scientist, 57(10):1500-1509,
2013.

K. Verbert, S. Govaerts, E. Duval, J. L. Santos,

F. Van Assche, G. Parra, and J. Klerkx. Learning
dashboards: an overview and future research
opportunities. Personal and Ubiquitous Computing,
18(6):1499-1514, 2014.

L. Werner, J. Denner, and S. Campe. The Fairy
Performance Assessment : Measuring Computational
Thinking in Middle School. Proceedings of the 43rd
ACM Technical Symposium on Computer Science
Education - SIGCSE ’12, 215-220, 2012.

