
A Framework For Hypothesis-Driven Approaches To
Support Data-Driven Learning Analytics In Measuring
Computational Thinking In Block-Based Programming

Shuchi Grover
SRI International, Menlo Park, CA

shuchi.grover@sri.com
Michael Eagle

HCII, Carnegie Mellon University
meagle@cs.cmu.edu

Marie Bienkowski
SRI International, Menlo Park, CA
marie.bienkowski@sri.com

Nicholas Diana
HCII, Carnegie Mellon University

ndiana@cs.cmu.edu

Satabdi Basu
SRI International, Menlo Park, CA

satabdi.basu@sri.com
John Stamper

HCII, Carnegie Mellon University
jstamper@cs.cmu.edu

ABSTRACT

K-12 classrooms use block-based programming environments
(BBPEs) for teaching computer science and computational
thinking (CT). To support assessment of student learning in
BBPEs, we propose a learning analytics framework that combines
hypothesis- and data-driven approaches to discern students’
programming strategies from BBPE log data. We use a principled
approach to design assessment tasks to elicit evidence of specific
CT skills. Piloting these tasks in high school classrooms enabled
us to analyze student programs and video recordings of students
as they built their programs. We discuss a priori patterns derived
from this analysis to support data-driven analysis of log data in
order to better assess understanding and use of CT in BBPEs.

1. INTRODUCTION
Most K-12 computer science (CS) courses teach programming to
support learning of computational thinking (CT) practices such as
decomposing problems, debugging, and use of CT concepts to
create computational solutions. However, programming is, and
has been, difficult for novices to learn [5], and assessing K-12
students’ learning is typically done manually by checking
students’ final programs, giving an incomplete picture of students’
CT skills. Examining process gives a more complete picture [2].

We present a theoretical framework that researchers can use to
design measurement systems for block-based programming
environments (BBPEs) for research or application. Using this
framework, we analyzed log data from a previously designed
assessment of middle school CT in the Alice BBPE; designed new
tasks based on the Evidence Centered Design (ECD) framework
(a principled approach to guide assessment design [3]), and
derived a priori hypothesis-driven patterns. We describe how the
framework can inform future efforts that blend hypothesis- and
data-driven approaches for measuring CT skills.

2. RELATED WORK
Programming is a complex activity that involves understanding a
problem as a computational task, mapping a design for the
program, drawing on problems previously programmed that have

a similar structure, instantiating abstract program patterns, coding
the program, and then testing and debugging. Past research relies
on examining the finished programs for use of programming
constructs, however, learning analytics (LA) approaches [1] offer
better ways to analyze student understanding, misconceptions, and
steps to a solution using data from digital environments such as
number of actions in students’ programs and number of successful
and unsuccessful program compilations [2]. Clustering techniques
[3] led to various programmer behavior profiles, and unsupervised
methods were used to derive program-state patterns and state
transitions to predict success outcomes [4]

Early efforts have mostly analyzed log data post-hoc, looking for
static constructs or patterns largely from the “bottom up” [8] using
data-driven LA. New blended LA assess students’ learning
processes in various digital learning environments by combining
ECD and LA for hypothesis-driven generation of a priori patterns
about learner actions [6]. ECD focuses on three related models:
student (what are targeted cognitive constructs?), task (what
activities allow students to demonstrate cognitive constructs?),
and evidence (what data provide evidence of cognitive
constructs?). ECD helps connect important constructs that we
want to measure with observable behaviors (including patterns of
learner actions). Also, importantly, evidence is obtained by
deliberately putting students in situations or tasks that will elicit
the needed evidence. Once semantically meaningful patterns are
defined a priori, data mining techniques can be used to analyze
the patterns further.

3. METHODOLOGY
This work is part of a broader effort to study learner behavior in
BBPEs, specifically, What patterns of behavior in data logs from
BBPEs provide evidence of learners’ use of CT concepts and
practices? In Phase 1, we analyzed a dataset from an assessment
task designed and used in prior research [7]. 118 females and 202
males aged 10 to 14 years completed the 30-minute task which
involved modifying existing code. Students’ programs and Alice
log data were collected, and the programs were scored manually
using a rubric for algorithmic thinking and abstraction. We had
complete data for 229 students. We applied ECD to “reverse
engineer” this task into specific CT concepts and skills and give
evidence of what those might look like in log files. We also
compared action sequences between students who scored high and
low (relative to the median) to determine commonality of
sequences for each group. We found sequences that were
significantly more common among students with high grades and
one sequence that occurred significantly more frequently for
students with low grades. Further analysis showed that a higher

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for third-party components of this work must be honored. For all other
uses, contact the Owner/Author.
Copyright is held by the owner/author(s).
LAK '17, March 13-17, 2017, Vancouver, BC, Canada
ACM 978-1-4503-4870-6/17/03.
http://dx.doi.org/10.1145/3027385.3029440

number of code edit actions as well as more frequent testing were
associated with higher final scores. Also, students who made more
changes to their code tended to test their program more frequently
however, whether students tested their programs frequently, or
after working on a considerable part of the program, did not seem
to have a bearing on their final scores. In this way, we gained
insights into interpreting student actions from logs. In Phase 2, we
applied ECD for forward design of a more complex task to
generate richer process data to observe repeated use of constructs
and CT practices. We designed two new Alice assessment tasks
aligned with focal CT concepts and practices. These tasks were
piloted in two high school introductory CS classrooms with 27
and 28 students. Data included final Alice files and log data for all
students and screen recordings for 6 students. Analysis of logs
revealed similar issues that students struggled with in both tasks:
hard-wired vs. general solutions, improper termination conditions,
parallel vs. sequential execution, effective solution
decomposition, and appropriate random number use.

Analyses of screen captures from the 6 students using a ‘process
over product’ lens to assess CT practices showed that some
students created their own methods, tested the methods in
isolation, and then used the methods in the main method. These
practices demonstrate abstraction, modularization, and testing in
parts, and could serve as useful patterns to search for in students’
log data as evidence for CT skills. In addition, we noticed certain
phases during students’ programming process when a student was
unable to progress. The student added, deleted, or reorganized
existing actions and repeatedly tested the program after each small
edit. While repeatedly testing and editing is not a practice we need
to discourage, it does become problematic when a student cannot
progress towards the task goal even after repeated editing and
testing. Such circumstances can easily lead to frustration and loss
of engagement, and can thus serve as good candidates for
potential patterns to be detected as students work on their
assessment tasks.

3.1 Hypothesis-Driven Framework
The research described applies ECD to conduct thoughtful and
deliberate hypothesis-driven analyses. These analyses reveal
patterns of behavior that complement data-driven findings of
student programming actions. Our work helps us articulate a
preliminary framework for effectively using a hybrid approach to
interpret student actions in log data from BBPEs in general. The
through line from the ECD domain modeling stage to the patterns
derived in Section 3.2 helps us connect log data entries to CT
skills and practices that we aim to measure (both formatively and
summatively) in order to make claims about student
understanding of CT skills. The framework (Fig. 1) describes an
iterative process that begins with articulating important CT
concepts and practices. Careful design of tasks put students in
situations that evoke behaviors to provide potential observables of
these concepts and practices. Detailed code analysis of varied
solutions reveals students’ use of constructs (correct or otherwise)
and approaches to solutions. Similarly, analyzing data from
observations reveals aspects of students’ actions that are never
seen in the final program. These can reveal student
misunderstanding of concepts even if the final solution seemingly
demonstrates correct usage. Combined qualitative analyses of the
solutions and process of a designed task provide a deeper
understanding than is possible from data-driven analytics alone,
including potential code sequences that map to practices that
could be detected in logs. These hypotheses lay the foundation for
detectors for these patterns and provide a richer interpretation of
student process in BBPEs.

Figure. 1: Proposed Framework for Hypothesis-driven Analyses to

Support Data-Driven Analytics

4. CONCLUSION & NEXT STEPS
Our emergent framework for using hypothesis-driven analyses to
support data-driven learning analytics leads to better interpretation
of student actions to assess skills in BBPEs. Currently, in Phase 3,
we are using and refining our framework. We are gathering
program files and log data from ~100 students in three high school
classrooms in Fall/Winter of 2016/17, and classroom observations
and screen recordings with interviews from a few students.

5. ACKNOWLEDGMENTS
We gratefully acknowledge grant support from NSF IIS-1522990, and
Sangeeta Bhatnagar for her support in conducting classroom research.

6. REFERENCES
[1] Baker, R., & Siemens, G. 2014. Educational data mining and

learning analytics. In K. Sawyer (Ed.), Cambridge Handbook of
the Learning Sciences.

[2] Berland, M., Martin, T., Benton, T., Petrick Smith, C., & Davis,
D. 2013. Using Learning Analytics to Understand the Learning
Pathways of Novice Programmers. JLS, 22(4), 564–599.

[3] Mislevy, R.J. & Haertel.G. 2006. Implications of Evidence‐
Centered Design for Educational Testing. Educational
Measurement: Issues and Practice, 25(4), 6-20.

[4] Piech, C., et al. 2012. Modeling how students learn to program.
In Proceedings of the 43rd SIGCSE (pp. 153-160). ACM.

[5] Robins, A., Rountree, J., & Rountree, N. 2003. Learning and
teaching programming: A review and discussion. Computer
Science Education, 13(2), 137-172.

[6] Rupp, A. A., et al. 2012. Putting ECD into Practice: The
Interplay of Theory and Data in Evidence Models within a
Digital Learning Environment. JEDM, 4(1), 49–110.

[7] Werner, L., Denner, J., Campe, S., & Kawamoto, D.C. 2012.
The Fairy Perf. Assessment: Measuring computational thinking
in middle school. In Proceedings of the 43rd SIGCSE. ACM.

[8] Winne, P. H., & Baker, R. S. 2013. The potentials of educational
data mining for researching metacognition, motivation and self-
regulated learning. Journal of Educational Data Mining, 5(1).

