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ABSTRACT
We demonstrate that, by using a small set of hand-graded student
work, we can automatically generate rubric criteria with a high
degree of validity, and that a predictive model incorporating these
rubric criteria is more accurate than a previously reported model.
We present this method as one approach to addressing the often
challenging problem of grading assignments in programming envi-
ronments. A classic solution is creating unit-tests that the student-
generated program must pass, but the rigid, structured nature of
unit-tests is suboptimal for assessing the more open-ended assign-
ments students encounter in introductory programming environ-
ments like Alice. Furthermore, the creation of unit-tests requires
predicting the various ways a student might correctly solve a prob-
lem – a challenging and time-intensive process. The current study
proposes an alternative, semi-automated method for generating
rubric criteria using low-level data from the Alice programming
environment.
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1 INTRODUCTION
Manually grading programming assignments is often a time-consuming
and labor-intensive process. As a result, instructors often employ
Automated Assessment Tools (AATs) to increase the efficiency and
consistency of the grading process. However, the rigid evaluation
criteria used by most AATs are often unable to assess more open-
ended programming assignments, such as those seen in the Alice
programming environment [7].

The structured nature of programming data has inspired many
solutions to the automatic grading problem [2]. Most automated
grading systems for programming assignments operate, at a basic
level, in a similar way. The system subjects the student’s submitted
program to a series of test cases that supply various inputs to the
program. The system then monitors the output for errors or unex-
pected values, and grades the student’s work accordingly. These
solutions not only reduce the instructor’s workload, but have been
shown to have a positive impact on student learning [8] as well.

Unfortunately, this paradigm is often inappropriate or ineffective
at grading assignments in open-ended environments such as Al-
ice. While these environments share the capacity to produce large
amounts of transactional data on student problem-solving behavior,
leveraging that data in an data-driven grading system may require
a different approach.

One potential solution is using natural language processing
(NLP) to look for meaningful patterns in user-generated data. Wang
et al. showed that NLP could reliably detect constructs like creative
problem-solving in open-ended questions [10]. In the programming
domain, Zen et al. demonstrated that Latent Semantic Analysis
(LSA) can be used to automate grading [12]. Similarly, previous
work has shown that even a less sophisticated NLP method (bag-
of-words) could be used to predict student grades from low-level
log data [4].

While these NLP approaches may provide a method for assist-
ing in the grading of open-ended programming assignments, they
often fail to provide an interpretable justification for the machine-
generated grades. In this study, we build off of previous work to
generate a model that can both predict grades in an open-ended
environment, and provide an interpretable justification for those
grades by indicating the presence or absence of data-driven rubric
criteria. We compare two methods of selecting useful rubric criteria:
L1 regularization and expert-seeding.
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Using experts as a resource for quality content is not entirely
novel. Stamper et al., found that using a small amount of sample data
generated from experts solving the educational tasks was able to
greatly reduce the amount of data needed to automatically generate
feedback [9]. Rather than produce additional data, as well as to avoid
potential bias in expert solutions, Mostafavi et al., successfully used
a subset of “exemplar” students, those who performed well above
average, to train a data-driven mastery system in a problem solving
tutor [6]. The current study uses a similar approach, comparing
pieces of code from exemplar and non-exemplar students to select
useful rubric criteria.

1.1 Related Work
As part of our previous work, we developed a predictive model of
students’ final grades. We used NLP to generate a vocabulary of
terms from code-states which are snapshots of the student-built
programs that were reconstructed from their low-level log data.
While the model was fairly accurate, the features the model iden-
tified as important for prediction were not very interpretable. In
the current study, we expand the grain-size of our features from an
NLP term to a small object that we call a code-chunk. Using this
larger grain-size, we demonstrate that:

(1) we improve the accuracy of our predictive models, and
(2) we increase the interpretability of the key features of our

model.
This second result is particularly important because it allows

us to compare the semantic quality of these data-driven features
against the real, human-generated rubric used to generate the stu-
dents’ final grades.

The ability to use data to drive the generation of a predictive
model has several benefits for both instructors and students. First,
like all AATs, this system could reduce time spent grading. Sec-
ond, because the model solutions are student-generated, it would
reduce time spent trying to imagine all possible correct solutions
(i.e., a large enough training set will likely include a large variety
of potential solutions). Third, interpretable rubric criteria remove
some of the mystery present in other NLP-based approaches. It is
easy to imagine a situation where a student, unhappy with their
machine-generated grade, demands an explanation from the in-
structor. The interpretable rubric criteria generated by our system
allow the instructor to point to specific pieces of code when answer-
ing the student. Finally, these interpretable rubric criteria make it
easier to explore the relationship between specific pieces of code in
student-generated log data and higher-order computational skills.

2 METHODS
Our methodology can be roughly separated into to two stages
that we will describe in detail below . First, we transformed the
raw, low-level log data into small objects that we call code-chunks.
Second, we tested two methods for selecting code-chunks that
may be predictive of student success: seed-based selection and L1
regularization.

2.1 Data
The data used in the current study were originally collected by
Werner et al. [11] as part of a two year project exploring the impact

of game design and programming on the development of computer
science skills. The students were asked to complete an assessment
task called the Fairy Assessment, in which they are required to fix
several errors in a malfunctioning program. A key feature of this
dataset is the way in which it was graded. Each student’s program
was hand-graded by two experimenters along a 24 point rubric.
These grades serve as the ground truth that we can use to both
train and evaluate our models. We used a subset of the original data
(N=227), excluding students who worked on the assessment more
than 5 minutes longer than the 30 minutes allotted or with missing,
ambiguous, or incorrect grade or log data.

Diana et al., describes a method for transforming linear log data
into hierarchical code-states [4]. Briefly, the linear log data out-
putted by Alice’s internal logging system was reverse-engineered
into a hierarchical structure that is more representative of the stu-
dent’s actual program. These hierarchical structures, called code-
states, are created for each step in a student’s log file, approximating
a snap-shot of the student’s program at each step. The result is a
list of cumulative code-states for each student that are both more
readable and more amenable to analyses.

2.2 Code Chunks
Previous work had used natural language processing techniques to
extract a vocabulary of terms from student code-states. These terms
served as features in linear model used to predict a student’s final
grade at various time points throughout the class period. While
the model could successfully predict grades, the features that were
shown to be most important to the prediction were largely unin-
terpretable. In an effort to increase interpretability, we explore a
method for decomposing code-states into smaller, interpretable
objects we call code-chunks.

To covert a code-state into a set of code-chunks, each level of
the code-state object is translated into a single-level code-chunk.
If a parameter represents a list of child nodes, that parameter is
ignored. Instead, a new code-chunk is created for each of the child
nodes. Additionally, overly specific parameters such as "id" are
ignored. Including these parameters would give the code-chunk
a degree of specificity that makes finding functionally identical
code-chunks more difficult. See Figure 1 for an example conversion
from code-state to code-chunks.

The ultimate goal of organizing code-state data this way is to
find meaningful and important chunks of code that are predictive
of student success. Once identified, these chunks can be used to
construct a rubric used to grade new student data.

2.3 Feature Selection
We compared two methods for selecting code-chunks that may
predict final grades: selecting code-chunks prior to the regression
and selecting code-chunks (as features) within the regression.

2.3.1 Using Exemplar-Seeds and Code-Chunk Frequency to Se-
lect Features. In the first method, we selected potentially useful
code-chunks by first dividing the sample of student data into two
groups along a final grade threshold: high-performing students
(f inalдrade ≥ threshold) and low-performing students (f inalдrade <
threshold). Note that here the labels high and low are used for the
sake of simplicity, and that students labeled as low-performing may
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Figure 1: An example of how code-states are decomposed
into code-chunks. Note that overly specific parameters like
"id" are dropped. Additionally, parameters that represent
lists of child nodes are also dropped. Instead, a new code-
chunk is created for each of the child nodes.

have performed well on the task, but simply failed to score at or
above the threshold.

Once two groups of students had been established, we compared
the relative frequencies of code-chunks between groups. This was
done by first generating a list of all possible code-chunks. Then we
count each occurrence of each chunk for each of the two groups. Fi-
nally, we use a chi-squared test to determine if each chunk has a sig-
nificantly higher or lower frequency in the high-performing group
than in the low-performing group. These significantly more or
less frequent chunks serve as the features for our grade-prediction
model.

Note that we included code-chunks that have a significantly
lower frequency in the high-performing group. Essentially, these
code-chunks are markers of novice behavior that is rarely seen in
students who score well. They may indicate misconceptions or anti-
patterns of behavior [3]. Expert teachers often have an intuition
about the kinds of misconceptions students may have when solving
a problem, but a key contribution of this methodology is a data-
driven approach for identifying those misconceptions.

To explore the space of potential features, we varied the thresh-
old used to divide high-performing students from low-performing
students. We also generated a linear model using all features as
input to serve as a baseline.

2.3.2 Using Lasso Regression to Select Features. In the second
method, we used L1 regularization to select features via a lasso
regression. The lasso reduces features by encouraging weights to
shrink to zero. Features with aweight of zero are effectively dropped
from the model, reducing the number of features [5].

Figure 2: A visual representation of the flow of data in the
seed-based feature selection method. This graph represents
one fold in the cross-validation.

2.4 Model Parameters and Cross-Validation
Unless otherwise stated, all models were generated by using 20%
of the data for training the model and 80% of the data for testing
the model. While the models generally perform better with a larger
training set, the purpose of this paper is to provide a method for
reducing instructor work. As such, limiting our training set to 20%
(approximately 45 students) provides some external validity for the
results we report.

We compare each of these models using Root Mean Square Error
(RMSE). Each reported RMSE value is the standardized average of
a Stratified Shuffle-Split Cross-Validation (Folds=100). Before cross-
validation in the seed-based feature selection method, each student
was labeled either a high or low-performing student according to
their grade and the specified threshold. Then, for each fold the data
were divided into roughly equal groups, preserving the ratio of high
to low-performing students across groups. The python package
scikit-learn was used for cross-validation, linear regression, and
lasso regression [1].

3 RESULTS
3.1 Linear Regression

3.1.1 All Code-chunks as Features. A linear model was gener-
ated to test the effect of organizing features as code-chunks (as
opposed to the vocabulary of terms used in the previously reported
NLP model). We found that the model using all code-chunks as fea-
tures was more accurate (RMSE=0.266) than the previously reported
NLP model (RMSE=0.384) at predicting final grades.

3.1.2 Seed-Based Feature Selection. The features used in our
seed-based feature selection method were selected by comparing
the relative frequency of high-performing vs. low-performing code-
chunks. We used a chi-squared test to determine if the frequencies
between groups were significantly different (p < .05). On average,
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a very small percentage (0.016%) of code-chunks met this criteria
for each fold.

Several linear models were generated to test the effect of our
seed-based feature selection approach at different final grade thresh-
olds. We explored the range of final grades from 20-30 (66-100%)
as final grade thresholds and generated a linear model for each
value in that range. A final grade threshold of 30 had the lowest
score (RMSE=0.273) while a threshold of 26 had the highest score
(RMSE=0.331).

3.2 Lasso Regression
A lasso regression model (α = 0.25) was generated to test the effect
of using L1 regularization to select features (code-chunks) rather
than selecting them using the seed-based, chunk frequency method
described above. We found that the lasso regression model was
more accurate (RMSE=0.235) than both a linear model using the
same input features (all code-chunks) (RMSE=0.266) and a linear
model using the pre-selected seed-based features (RMSE=0.273).

3.3 Comparing Selected Features
On average the lasso regression (M=14.45, SD=2.87) selected signif-
icantly more features (p < .001) than the frequency-based feature
selection method (M=10.12, SD=1.90). Figure 3 shows a moderate
correlation (r2 = 0.686) between the weights of features shared by
both models.

In addition to comparing the features selected by each model,
we were also interested in framing the features selected as rubric
criteria. This allowed us to compare our data-driven feature selec-
tion against the human-generated rubric criteria used to grade the
students’ work. While these comparisons are inherently qualitative,
there were several cases of data-driven criteria bearing considerable
similarity to human-generated criteria. For example, the human-
generated rubric criterion that assesses whether or not a character
named Halo had turned some amount to face another character.
The following is a strongly-weighted code-chunk shared by both
models that may correspond to this criterion:

{

'index': '2',

'DIRECTION': 'left',

'SUBJECT': 'Halo',

'name': 'turn',

'AMOUNT': '0.25'

}

Additionally, the human-generated rubric criterion that assesses
whether or not a character named LeafFlame is resized to the value
2. Again, we find a strongly-weighted code-chunk shared by both
models that may correspond to this criterion:

{

'index': '0',

'AMOUNT': '2',

'name': 'resize',

'SUBJECT': 'LeafFlame'

}
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Figure 3: The weights of the features shared by each feature-
selection method. We see a moderate correlation between
the feature weight in the seed-based model and the feature
weight in the lasso-based model.

4 DISCUSSION
4.1 Model Comparison
We found that both methods of feature selection produced models
that were more accurate than the previously reported predictive
model. This suggests that the increased context provided by the
larger grain-size of a code-chunk results in better features and a
more predictive model, supporting our first hypothesis.

4.2 Validity of Generated Rubric Parameters
With respect to our second hypothesis, that increasing the gran-
ularity of features will increase the interpretability of the model,
we found that several highly-weighted code-chunks present in
both feature selection methods shared a resemblance to the human-
generated rubric criteria. This increased interpretability allows us
to frame the features of our predictive model as rubric criteria. Fur-
thermore, the accuracy of the predictive model that utilizes these
automatically generated rubric parameters demonstrates the ability
of a data-driven approach to reliably supplement human graders.

It is also worth noting that the human-generated rubric con-
sisted of 24 different parameters (though many were variants of
one another (e.g., criteria such as “doTogether_with_walk” and
“doTogether_no_walk”). In contrast, our lasso regression selected,
on average, only 14.45 features. The specificity afforded by the ad-
ditional parameters present in the human-generated rubric may be
key in improving the accuracy of our predictive model further.

4.3 Applications
This data-driven rubric generation method could potentially reduce
instructor workload in the following ways: First, we demonstrate
that a reasonably accurate model can be trained on a small fraction
(20%) of the data. Second, given a small set of training data, our
model selects the pieces of code from student data (code-chunks)
that are predictive of final grades. Because these chunks of code are,
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Table 1: Comparison of linear and lasso regression models using different feature selection methods.

Regression Feature Selection RMSE Avg. # Features

Linear None (All Code-Chunks) 0.266 NA
Linear Frequency-Based 0.273 10.12
Lasso L1 Regularization 0.235 14.45

in large part, interpretable, they can be framed as the rubric criteria
by which the instructor can evaluate unseen student data. Finally,
given that these rubric criteria were selected using a predictive
model, final grades for the remaining, unseen student data can
easily be predicted.

In addition to the generation of rubric criteria and grades, we
believe that this approach may be used to yield more fundamental
insights about the relationship between raw log data and higher-
order computational skills. Using this approach and an assignment
carefully designed to elicit a particular computational skills (e.g.,
recursion, abstraction, etc.), an instructor may be able to find the
physical pieces of student code that correspond most closely with
an abstract skill. Our future work will explore this possibility.

5 CONCLUSION
By transforming low-level log data from a programming environ-
ment into context rich code-chunks, we were able to: 1) increase
the accuracy of our predictive model (with respect to a previously
reported model that used smaller-grained, NLP terms as features),
and 2) draw comparisons between our data-driven rubric parame-
ters and human-generated rubric parameters. Together, these two
results demonstrate a methodology that could drastically reduce
the time instructor’s spend grading assignments, while providing
an interpretable justification for the machine-generated grades.
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