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Abstract— Wireless Sensor Networks (WSN) are a subset of
wireless networking applications focused on enabling sensor
and actuator connectivity without the use of wires. Energy
consumption among the wireless devices participating in these
networks is a major constraint on the deployment for a broad
range of applications enabled by WSNs. This paper introduces,
for the first time, a novel methodology based on predictive
protocol management with contingency planning (PPM and CP).
This approach allows efficient update of the WSN operational
mode in order to optimize the energy utilization based on thetime
varying characteristics of the Radio-Frequency (RF) in which the
network operates.

I. I NTRODUCTION

Energy efficiency is a major concern in the deployment of
Wireless Sensor Networks (WSN) for industrial, commercial
and residential applications. Long-term monitoring in harsh
physical environments or near inaccessible locations heightens
the need to utilize the sensor nodes’ energy resources effi-
ciently since most WSN applications cannot tolerate frequent
(if any) battery replacement. The complexity of this problem
increases in the context of multi-hop WSNs. In this paper,
a novel approach is presented for employing a predictive
protocol model with contingency planning (PPM & CP). The
premise behind the approach is that providing the WSN nodes
with information concerning the operational environment leads
to efficiencies in network operation. To illustrate, a collocated
and co-channel interference source can cause an excessive
number of retransmissions while routing a message from
a node within a sensor field to the WSN’s base station.
The retransmissions expend valuable energy resources and
incur additional transmission latency. By efficiently providing
the WSN nodes with information concerning the impact the
interference can have on its distributed routing protocol,en-
ergy efficient routes can be formulated within the network.
Therefore, the approach efficiently updates the operational
mode of the WSN to minimize energy utilization based on the
time varying Radio-Frequency (RF) characteristics in which
the network operates.

Figure 1 presents a block diagram of the approach,
illustrating both the major functional components and the
information flow to accomplish this new methodology. The
major functional blocks described are:

Fig. 1. Block Diagram illustrating PPM with CP.

• WSN
• RF Environment Sensing Network
• PPM & CP

WSN: The WSN is implemented to perform a set of
applications which may change over time and which have
desired Quality of Service (QoS) requirements e.g. through-
put, latency, among others. The WSN is comprised of hard-
ware/software which enables specific capabilities, i.e., opera-
tional frequency bands, frequency agility, power control,rout-
ing protocols (for multi-hop networks), scheduling algorithms,
and so on. In addition, the WSN operates within a dynamic RF
environment comprising time varying co-channel interference
sources and time varying RF propagation characteristics such
as multi-path. Even if the WSN nodes are at fixed locations,
dynamics in the environment will significantly impact the RF
propagation characteristics, e.g., density of people in a building
or changes in the building structure.

RF Environment Sensing Network: The purpose of this
functional block is to provide spectrum usage patterns within
the operational environment of the WSN. Mangold, et. al.
discuss the concept of radio resource measurement for oppor-
tunistic spectrum utilization in the context of a homogeneous
IEEE 802.11 scenario [1]. Their paper was motivated, in
part, by standards activities in the IEEE 802.11k task group
[2]. The IEEE 802.11k task group is developing a radio
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resource measurements extension to the IEEE 802.11 wireless
local area network (WLAN) standard. Mechanisms for RF
environment sensing are likely to be needed to meet the
Federal Communication Commissions (FCC) [3] initiative to
use cognitive radios to improve spectrum utilization as well
as the Defense Advanced Research Projects Agency (DARPA)
Spectrum Agile Radio (SARA) which is part of the Next
Generation Communication (XG) Program [4].

Furthermore, the RF environment-sensing network, as pro-
posed in Figure 1, will be used to enhance site specific
propagation estimates within the operational environmentand
capture time varying patterns in the propagation character-
istics. It is important to remark that this does not imply
measuring instantaneous small-scale multi-path characteristics
which are too time sensitive for remote measurement. Instead,
measurements would be targeted at capturing large scale
changes or patterns in the shadowing characteristics such as
building structural changes, population density and variations
in inventory. As depicted in the Figure 1, the RF environment-
sensing network is separate from the WSN and is not an
integrated part of the WSN, as it could be. The motivation
for this is two fold: energy conservation and multiple usages.
Measuring changes in the environment and passing this in-
formation to the PPM & CP needs to be done on a regular
basis. Based on the WSN application, the WSN’s nodes on-
off duty cycle may not allow them to accurately measure the
dynamics of the operational environment. Requiring the nodes
to turn on solely to measure the environment could be counter
productive in preserving the node’s energy. Also, it is con-
ceivable that in future industrial, commercial and public areas
RF environment sensing networks will be needed to service
multiple requirements such as providing RF measurements for
multiple WSNs, WLANs and other wireless networks as well
as addressing security requirements.

PPM & CP: The general concept for this functional block is
to optimize the performance of WSNs based on the predicated
operational characteristics of the WSN. The optimization is
conducted off line and the operational changes are then
downloaded to the network. An important constraint for the
functional block is that the cost (i.e., energy consumption)
required for updating the network needs to be less than the
savings obtained by the performance improvement achieved by
the update. To facilitate efficient network updates,contingency
planningis used to develop a robust set of contingency policies
for each node with each policy addressing a distinct variation
in the observed RF interference environment.

Within a WSN there are often a rich set of routes between
a source and a sink involving a varying number of hops.
Contingency planning involves the development of a set of
routes through a network with individual routes in the set
having the same or nearly the same energy requirement, i.e.,a
contingency policy. Routes requiring lower total energy have
a greater utility. In an interference free environment all routes
between a source and a sink requiring the same number of
hops expend approximately the same total energy. This is
based on the WSN transmitters using a fixed transmit power

level which is common with Bluetooth and IEEE 802.11
transceivers. Therefore the set of routes requiring the minimum
number of hops would represent the most energy efficient
contingency policy. In an operational environment with in-
terference sources, certain routes may require an excessive
number of retransmissions in order to complete one or more
hops within the route. Under this condition, a new contingency
policy is required. The new contingency policy is associ-
ated with the observed interference environment and removes
the routes requiring excessive retransmissions from the set.
Therefore, based on the approach presented in the paper, a
contingency policy is triggered by a specific observed inter-
ference environment in order to avoid routes with excessive
retransmissions. This is accomplished by working within the
networks distributed routing protocol by providing the nodes
affected by interference with a list of nodes to avoid within
its one-hop neighborhood. Over time, as new interference
environments are observed and incorporated into new con-
tingency policies, the contingency plan becomes robust. The
PPM & CP block can then update the network with the current
optimal contingency policy based on the observed operational
environment. It is also conceivable that over sufficiently long
time intervals quasi-periodic behavior could be learned based
on observing operational environment patterns. In these cases,
the network nodes could automatically follow a sequence of
contingency policies with limited interaction from the PPM&
CP functional block.

Interference issues associated with WSN operation have
been actively investigated. The focus of a number of re-
searchers is on self-interference within a WSN and its impact
on capacity [5] and on methods to mitigate [6]. Link quality
aware routing has been proposed [7] [8]. The researchers’
cognitive packet networks (CPN) approach uses an adaptive
selection of paths. The technique uses specially designated
packets, which learn how to achieve a predetermined routing
goal. The results presented for CPN examine self-interference
in an ad hoc network, even though the technique could be
extended to include issues associated with coexistence, i.e.,
interference between two collocated and uncoordinated wire-
less networks as presented in this paper. The CPN approach
is fully distributive and is based on a neural network learning
algorithm. Packets are required to be exchanged within the
network in order to learn the desired routing goal. The
technique presented in this paper avoids the communication
overhead associated with learning the state of the interference,
by using the PPM & CP strategy outlined in Figure 1 and as
presented in the remainder of this paper.

In the remainder of the paper, the PPM & CP approach
is developed for optimizing energy efficiency within a multi-
hop WSN by developing contingency plans for route manage-
ment in dynamic interference environment. In Section II and
III, a general formulation for the approach is developed. In
Section IV, the approach is illustrated based on a Bluetooth
WSN operating in an IEEE 802.11b interference environment.
Conclusions and future work are presented in Section VI.



Fig. 2. General Network Topology for WSN in an operational environment
with interference sources.

II. ROUTE MANAGEMENT IN A DYNAMIC INTERFERENCE

ENVIRONMENT

In this section, an approach for route management is devel-
oped within the context of the PPM and CP strategy depicted
in Figure 1. The goal is to provide the WSN nodes with
contingency plan updates based on observed spectrum usage
patterns in order to minimize the energy required to transmit
a packet from an arbitrary source nodeHS to the destination
node HD. Within a WSN the destination node is often the
base station at which the sensor data is collected. The PPM &
CP block is divided into three stages for route management:
parameter estimation, WSN performance assessment and op-
timization model, and contingency planning and WSN update
strategy. Each of these stages are developed in greater detail
in this section.

A. Parameter Estimation

The first stage in the PPM & CP is to estimate parameters
required for evaluating and predicting the performance of
the WSN based on the current operational environment. The
operational environment is characterized by the RF environ-
ment sensing network which provides information concerning
activity levels of the interference sources and estimates of
signal power levels.

Figure 2 illustrates a general WSN network topology with
N − 1 nodes between the source node atHS and destination
node atHD. In addition to the WSN nodes, there areM inter-
ference sourcesI1...IM . Based on a fixed transmission power
and the RF propagation characteristics of the environment,
each node can directly communicate with a set of nodes in its
one-hop neighborhood andUi = {Hi1Hi2...H|Ui|} represents
the set of nodes inHi’s one-hop neighborhood where|Ui|
is the cardinality of the set. For the study presented, a fixed
energyε is required for transmitting and receiving a single
packet transmission within a node’s neighborhood. Due to
interference, packet retransmission could be required in order
to successfully transmit a packet. Therefore, the expected
energy required to transmit a packet fromHi to Hj is given
by εNTx(Hi, Hj) whereHj ∈ Ui and

NTx(Hi, Hj) = 1 +
Pr[C|i, j]

1 − Pr[C|i, j]
=

1

(1 − Pr[C|i, j])
(1)

is the expected number of transmissions required to success-
fully transmit a packet fromHi to Hj . Pr[C|i, j] is the
probability of requiring a retransmission due to interference
from one or more interference sources, i.e., probability of
collision given by

Pr[C|i, j]=

M
∑

k=1

Pr[Ck|i, j] −

M
∑

l=1

M
∑

k=1
k 6=l

Pr[Ck|i, j]Pr[Cl|i, j] + ...

(2)
assuming the collision probabilities for each interference
sourceIk, Pr[Ck|i, j], are independent.Pr[Ck|i, j] is given
by

Pr[Ck|i, j] = Pr[Ak]Pr[Ck|i, j, Ak] (3)

wherePr[Ak] is the probability the interference source is ac-
tive andPr[Ck|i, j, Ak] is the probability of collision given the
interference source is active.Pr[Ck|i, j, Ak] takes into account
the dynamics between the interference signal’s characteristics
and the desired signal’s characteristics at the intended receiver,
located atHj .

The principle output required by the next stage in the PPM
& CP is NTx(Hi, Hj) based on the observed interference
environment characterized by the interference sources activity
levels,Pr[Ak]. In order to evaluateNTx(Hi, Hj), based on
(3) the collision probabilityPr[Ck|i, j, Ak] needs to model
the specific interference scenario. For the scenario presented in
Section III, a WSN based on Bluetooth technology is operated
in an IEEE 802.11b WLAN environment. The collision proba-
bility is based on the likelihood the Bluetooth packet and IEEE
802.11b packet are time and frequency coincident with the
interference signal having sufficient power to cause an error.
Based on the author’s previous work [9] [10], a near closed
form solution was derived for evaluatingPr[Ck|i, j, Ak] . This
result was used in the analysis presented in Section III. A
detailed presentation of the derivationPr[Ck|i, j, Ak] goes
beyond the scope of this paper, but for completeness the
equation is given

Pr[Ck|i, j, Ak] =
2Pr[CT ]

BUL
× η (4)

where

η =

∫ BUL/2

0

(

1 −
1

2

[

erfc

(

ΩI/S(i, j, Ik) − γ(foffset)

√
2σγ

)])

dfoffset

wherePr[CT ] is the probability of time coincidence between
the IEEE 802.11b packet and Bluetooth packet and the term
ΩI/S(I, j, Ik) represents the interference to signal power ratio
(I/S) in dB at the receiver located atHj based on transmitter
at Hi and interference source atIk. The I/S ratio is given by

ΩI/S(i, j, Ik) = Ω802 −ΩBT − 10nlog10

(

DistE(Hj , Ik)

DistE(Hj, Hi)

)

(5)



Fig. 3. Probability of collision versus interference to signal power ratio
empirical and analytical results.

whereΩ802 = 20dBm and ΩBT = 0dBm are typical IEEE
802.11b and Bluetooth transmit powers, respectively,n is the
path loss exponent, andDistE(x, y) is the Euclidean distance
betweenx andy. A graph ofPr[Ck|·] versusΩI/S(·) based on
(4) is given in Figure 3. As presented in [9] [10], empirical
testing was conducted to validate (4) and the results of the
empirical tests are graphed in Figure 3 for comparison.

B. WSN Performance Assessment and Optimization Model

The next step within the PPM & CP functional block is
to use the parameter estimations for the number of trans-
missions,NTx(·), to assess the WSN routing performance.
The notation for the assessment procedure is developed based
on Figure 2 as follows. Let theith route between source
nodeHS to the destination nodeHD be defined asRSD,i ≡
[HSHi1Hi2...Hi(|RSD,i|−1)HD] whereHi1 ∈ US (US is the
one-hop neighborhood of the source node),Hi2 ∈ Ui1, ...
and |RSD,i| represents the number of hops in routeRSD,i.
An objective of route management is to minimize the energy
expended by multi-hop packet routing. If there is no interfer-
ence, then the routes that satisfy|RSD,min| ≡ mini |RSD,i|
represent the optimal routes and the predicted energy for
routing the packet would beε × |RSD,min| . As illustrated in
Section IV, interference can significantly influence the setof
minimum energy routes. By observingPr[Ak] for the interfer-
ence sources and subsequently estimatingNTx(Hi, Hj)∀i, j
based on (1) - (5), the predicted optimal route(s) would
be the set ofRSD,i which minimizes the total number of
transmissions required to successfully transmit a packet,i.e.,
mini NTx(RSD,i) where

NTx(RSD,i) = NTx(HS, Hi1) + ... + NTx(Hi(|RSD,i|−1), HD)
(6)

and the expected energy required to route the packet isε ×
mini(RSD,i).

In general, it is infeasible to use a centralized algorithm
for determining a WSN multi-hop route. Therefore, using the
centralized PPM & CP functional block to directly determine
which routes to use within the WSN is impractical. The
approach presented is based on using the PPM & CP to
provide information to the WSN’s nodes which will facilitate
distributed computation of the most cost effective routes for

successful transmissions in environments with multiple, non-
stationary interference sources. To achieve the goal, we build
upon the requirement of a number of current wireless ad hoc
network routing algorithms that require one-hop neighbor-
hoods’ to be defined as an initial step in formulating a multi-
hop route [11] [12] [13] [14] [15] [16] [17] [18]. Formulation
of energy efficient routes can be facilitated by PPM & CP by
biasing, i.e., weighting, the nodes inUi based on the cost of
the one-hop transmission.

In order to bias the one-hop neighborhoods, the WSN
routing performance needs to be assessed by evaluating the
WSN routes based on the observed interference activity within
the RF environment. In order to achieve this goal, the predicted
values ofNTx(RSD,i) for a given operational environment are
used in conjunction withMarkov Decision Process(MDP)
[19] to develop a rank ordering for allRSD,i. This process is
repeated between all source and destination nodes. The MDP
provides a ranked set of routes specified by

W
(q)
SD =

[

w
(q)
SD,1, ..., w

(q)
SD,i, w

(q)
SD,i+1, ..., w

(q)

SD,|W
(q)

SD
|

]

(7)

wherew
(q)
SD,i is the expected number of transmissions required

for the ith path from source to destination based on theqth

operational environment, i.e.,w(q)
SD,i = NTx(RSD,i)|Ψ

(q),
Ψ(q) defines theqth operational environment based onΨ(q) ≡

[Pr[A1], ...P r[Ak], ..., P r[AM ]], |W
(q)
SD| is the number of

routes inW
(q)
SD, andw

(q)
SD,i ≤ w

(q)
SD,i+1. The MDP algorithm

is briefly presented in Section III and key to its efficient
utilization is the formulation of the contingency plan and WSN
update strategy presented next.

C. Contingency Plan and Update Strategy

To further enhance the network update process, contingency
planning [20] [21] [22] [23] [24] is used in the last stage of the
PPM & CP functional block (Figure 1). Contingency planning
is used to develop contingency policies to address the WSN
operational requirements needed for the current environment.
The contingency policy needs to work within the context of
the WSN distributed routing protocol and needs to provide an
efficient method for updating the WSN.

As indicated above, a contingency policy is used to modify
the one-hop neighborhoods such that the WSN’s distributed
routing protocol avoids routes with high retransmission rates
and uses routes with the minimum or near minimum retrans-
mission requirements. From the MDP a ranked set of routes
is provided,W (q)

SD, wherew
(q)
SD,1 represents the optimal route

for the qth operational environment,Ψ(q). Implementing the
optimal route for each change in the operational environment is
too costly. The contingency, therefore, specifies a set of actions
required to work in conjunction with the WSN’s distributed
routing protocol. To illustrate the process, let the interference
sourceI1 havePr[A1] = 1.0 where the location of the sensor
nodes and interference sources are given in Figure 2. Under
this scenario the number of retransmissions betweenHS to
H2 is large due to the proximity ofI1 to H2. The action



required by the contingency needs to reduce the likelihood
of HS routing throughH2 and an action required by the
contingency policy is denoted byUS : H−

2 . This action
represents a negative weighting of the nodeH2 within the
one-hop neighborhood ofHS .

Based on the set of actions associated with thel th contin-
gency policy and based on the characteristics of the distributed
routing protocol, a ranked listing of the routes between the
source node and destination node can be identified as

χ
(q)
SD,l =

[

w
(q)
SD,l1

, ..., w
(q)
SD,li

, ..., w
(q)
SD,l

|χ(q)

SD,l
|

]

(8)

whereχ
(q)
SD,l is a set of ranked routes resulting from the contin-

gency policy’s actions,w(q)
SD,li

= NTx(RSD,li)|Ψ
(q), |χ(q)

SD,l |

is the number of routes inχ(q)
SD,l , and w

(q)
SD,li

≤ w
(q)
SD,li+1

.

The expected operational cost (energy),O
(q)
SD,l , required to

route a packet from the source node to the destination node
under thel th contingency policy based on theqth operational
environment and assuming the routes inχ

(q)
SD,l are equilikely

is

O
(q)
SD,l =

1

|χ
(q)
SD,l |

|χ
(q)

SD,l
|

∑

i=1

w
(q)
SD,li

. (9)

Therefore, the optimal set of actions for thel th contingency
policy is to minimizeχ(q)

SD,l while also minimizing the number
of actions required to implement the policy.

In addition, the operational cost is used in determining
whether or not a new contingency policy is justified. Given
a new operational environment is observed,ΨNew, then a
new contingency policy is formulatedlNew with correspond-
ing contingency policy’s actions and expected operation cost
O

(New)
SD,lNew

. Associated with the new contingency policy is
a energy cost required to update the WSN with the new
policy, i.e., P (New)

SD,lBest
. Therefore, in order to justify the cost

of updating the WSN with the new contingency policy the
following inequality must hold

εT New
H

[

O
(New)
SD,lBest

− O
(New)
SD,lNew

]

> P
(New)
SD,lNew

(10)

where O
(New)
SD,lBest

is the expected operational cost for the
current best contingency policylBest and T New

H is the time
horizon for the operational environmentΨNew, i.e., an esti-
mate of the time interval over which operational environment
remains essentially unchanged.

III. ROUTE ASSESSMENT- MARKOV DECISION PROCESS

The contingency plans for the nodes in the WSN are
developed by determining the optimal policy for each node at
a given level of interference using a Markov decision process
(MDP) [19]. An MDP is defined via its state setS, action set
A, transition probability matricesP, and reward matricesρ. On
executing actiona in states the probability of transitioning

to state ś is denotedP (ś |s, a) and the expected reward
associated with that transition is denotedρ(ś |s, a).

A rule for choosing actions is called apolicy. Formally it is
a mappingπ from the set of statesS to the set of actionsA. If
an agent follows a fixed policy, then over many trials, it will
receive an average total reward which is known as thevalue
of the policy. In addition to computing the value of a policy
averaged over all trials, we can also compute the value of a
policy when it is executed starting in a particular states. This
is denotedV π(s) and it is the expected cumulative reward of
executing policyπ starting in states. This can be written as

V π(s) = E[rt+1 + rt+2...|st = s, π] (11)

where rt is the reward received at time t,st is the state at
time t, and the expectation is taken over the stochastic results
of the agent’s actions.

For any MDP, there exist one or more optimal policies
which we will denote byπ∗ that maximize the expected value
of the policy. All of these policies share the same optimal value
function, which is writtenV ∗. The optimal value function
satisfies the Bellman equations [25]:

V ∗(s) = max
a

Σś P (ś |s, a)[ρ(ś |s, a) + V ∗(ś )] (12)

whereV ∗(ś) is the value of the resulting stateś. The sum
on the right-hand-side is the expected value of the one step
reward R(ś |s, a) plus the value of the next stateś, which
is the same as the backed-up value of a one-step lookahead
search, and themaxa is choosing the action with the best
backed-up value. This is the expected total reward that will
be received by a node when action a is taken in state s and
the node behaves optimally thereafter. Therefore, solvingthe
MDP is tantamount to computing its optimal function.

Given an MDP model(S, A, P, R), a dynamic program-
ming algorithm, value iteration, can be used to determine
the optimal value function [26]. Value iteration works by
computing the optimal value function assuming first a one-
stage finite horizon, then a two-stage finite horizon and so
on. These value functions are guaranteed to converge in the
limit to the optimal value function. In addition, the policy
associated with the successive value functions will converge
to the optimal policy in a finite number of iterations [25] and
in practice the convergence is quite rapid. The running time
for each iteration isO(|A||S|2) and hence total running time
is polynomial as long as the total number of iterations required
is polynomial [27]. Starting with an initial guess,V0, iterate
for all s

Vk+1(s) = max
a

(Σś P (ś |s, a)[ρa(ś |s, a) + Vk(ś)]) (13)

It is known that maxs εS |Vk+1(s) − V ∗(s)| ≤
maxsεS |Vk(s) − V ∗(s)| and thereforeVk converges to
V ∗ as k goes to infinity. In practice, the value iteration
algorithm iteratively updates the estimate ofVk+1(s) based
on the Vk values of neighboring states and stops when the



update yields a difference that is below a threshold. The
optimal policy is obtained by selecting the action with the
highest value for each state.

To implement this approach in the WSN application, we
first construct the control policy offline using generated data
for the collision probabilities of node to node transmission
for the given level of interference. The set of nodes describe
the state space of the MDP. The neighborhood of each node
defines the action space of each state and value is the utility
accrued when the end node or a dead end is reached. We
estimate transition probabilities of the formP (x′|x, a), which
denotes the probability of a transition to statex′, given that
the system was in statex and took actiona. The transition
probability is derived from the collision probability and rep-
resents the probability that the system was inx and tooka
and successfully arrived atx′. In our experiments we use a
starting value ofV0(s) = 0 and a reward of−1 is given for
each transmission allowing the reward measure to incorporate
the expected number of transmissions such that the optimal
policy in fact determines the optimal path from any node in
the network to the end node.

This approach has several advantages over other methods.
The policy is calculated for all expected interference scenar-
ios in an offline manner which produces an ordered list of
neighbors with weights giving significant information about
neighbors for a given policy. This offline calculation meansthe
nodes do not have to process data online, saving computational
expense on the node level. Also, when the scenario changes
only the nodes whose policy changes need to be updated. The
policy is also forward looking, meaning it takes the entire
route from the starting node to the end node into account.
This global optimization means our result will be better or at
least as good as any other method used.

IV. I LLUSTRATIVE EXAMPLE

In this section, the following example is evaluated to il-
lustrate the general PPM & CP strategy outlined in Section
II and III for optimizing the WSN routing management in a
dynamic interference environment. For the example, the WSN
is based on Bluetooth [9] technology and the WSN operates in
the presence of IEEE 802.11b [28] interference. The network
topology for the analysis is given in Figure 4. Bluetooth nodes
are located on a fixed grid at 3 meter intervals and are depicted
as circles in Figure 4.

For the analysis presented, an exponential decaying path
loss model is used for determining the received power [29].
Given path loss exponent,n = 3 and Bluetooth transmit power
of ΩBT = 0dBm, Bluetooth nodes can reliably transmit10m.
The neighborhoods for the source node,H0, and destination
node,H39, are depicted in the figure by the two semi-circles
(dashed lines). In the example presented, the single sourceto
destination pair is considered in order to illustrate the process.
The minimum number of hops required to transmit a packet
from H0 to H39 is 3, |RSD|min = 3. Due to the relatively high
degree of connectivity there are 33 routes requiring 3 hops
(two are illustrated in the figure,R1 = [H0, H19, H20, H39]

Fig. 4. Network Topology for Bluetooth WSN with IEEE 802.11binterfer-
ence scenario.

and R2 = [H0, H12, H27, H39]) and there are 1056 routes
requiring 4 hops (R3 = [H0, H6, H15, H33, H39] illustrates
a 4 hop route). In this section the notation,RSD,i has
been simplified toRi. IEEE 802.11b interference sources are
located at the triangles in Figure 4:I1 at location [10, 0] and
I2 at location [6, 5].

Three scenarios are considered where each scenario
examines a different number of interference sources. The
scenarios are defined as follows:

• Scenario I: One IEEE 802.11b interference source atI1,
• Scenario II: Two IEEE 802.11b interference sources - one

at I1 and one atI2,
• Scenario III: Three IEEE 802.11b interference sources -

two atI1 and one atI2 , For Scenario III, the two interference
sources atI1 are representative of an IEEE 802.11b access
point with multiple transceivers operating in different fre-
quency bands and utilizing a common antenna. Independence
is assumed between the all interference sources.

For each scenario, a ranked set of routesW (q) was evaluated
based onNTx(Ri). The Markov Decision Process (MDP)
was used to create the policies and obtain the rank ordered
paths forRi. The MDP model representing system behavior
for a particular environment is obtained from state set, action
set, transition probabilities and a reward function. The state
set is represented by a set of network nodes, the action set
by the one hop neighbors, and the transition probabilities
Pr(s′|s, a). The reward functionρ uses the expected number
of transmissionsNTx(Hi, Hj). The ranked ordered paths
for eachRi is determined by the MDP using the standard
value iteration algorithm. According to [26], the expected
cumulative reward(V ) of taking action(a) from state(s)
is calculated in terms of the cumulative reward of successor
states via the recursive equation given by equation (13).

The algorithm iteratively updates the estimate of V(s, a)
based on the maximumV value of neighboring states and
stops when the update yields a difference that is below a
threshold. Once value iteration is completed, the optimal path



will be defined by the state that yielded the maximumV value
for a given state. TheV value obtained will be the optimal
NTx for a givenRi. By observing allV values obtained from
neighboring states an order list can be created that minimizes
theNTx for a node,Hi, for each action in its neighbor setUi.
The MDP is run for each scenario presented and the resulting
ordered lists present the best choices for transmission fora
given scenario for eachHi.

For the example presented, the distributed routing protocol
used within the WSN is based on a minimum energy routing
protocol. Therefore, given no interference the 33 routes requir-
ing 3-hopes require essentially the same energy to successfully
transmit a message fromH0 to H39 . When a single IEEE
802.11b interference source is introduced atI1, (Scenario I),
then the expected energy required to successfully transmit
a signal from the source to destination varies based on the
relative impact the interference source has on the number of
transmissions required for each route. A histogram of the
expected number of transmissionsNTx(·) required for the
33 3-hop routes is shown in Figure 5. Based on the MDP
analysis, the optimal route isR2 = [H0, H12, H27, H39] with
NTx(R2) = 4.08. For the analysis presented, the baseline op-
erational cost for routing the data assumes that the distributed
routing protocol will select each of the 33 3-hop routes with
equal likelihood. Using equation (9), the baseline operational
cost O(I)

SD,baseline = 4.33 whereO
(I)
SD,baseline is the baseline

operational cost for the operational environment defined by
Scenario I.

Within the PPM & CP functional block, the MDP provides
a rank listing of the routes based onNTx(·). The contin-
gency policy for the operational environment is obtained by
formulating a sequence of actions which reduce the likelihood
of using high cost routes. Each action implemented incurs a
cost for updating the WSN, therefore the following rule is
employed for selecting the optimal set of actions to be used
in formulating thel th contingency policy

O
(q)
SD,l(m) − O

(q)
SD,l(m+1)

O
(q)
SD,l(m)

> Thresh (14)

whereO
(q)
SD,l(m) is the operational cost based on equation (9)

for the l th contingency policy using the firstm optimal actions
and O

(q)
SD,l(m+1) is the operational cost based on using the

first m + 1 optimal actions, andThresh is a threshold which
is dependent on the operational conditions of the WSN. The
threshold should be selected in order to ensure the justification
of the new policy. Using (10), the following inequality needs
to be satisfied∀l

O
(q)
SD,l − O

(q)
SD,new >

P
(q)
SD,new

εT
(q)
H

. (15)

For Scenario I, the first optimal action is to reduce the
likelihood H0 transmits to its one-hop neighborH19, U0 :
H−

19. For the analysis presented,U0 : H−
19 implies the

distributed routing protocol removesH19 from U0. In practice,
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Fig. 5. Distribution of the Number of transmissions over the3-Hop routes
for Scenario I.

this maybe too restrictive and simply reducing the likelihood of
transmission maybe required in order to preserve connectivity
within the network. By removingH19 from U0, the seven
highest cost routes are removed. The resulting operational
cost based on this single action isO(I)

SD,new = 4.23. This
action provides a 2.2% improvement over the baseline. The
next optimal contingency policy action isU18 : H−

20. This
results in O

(I)
SD,new = 4.22 based on a contingency policy

which includes both Actions 1 and 2. The improvement using
both actions is 2.4% or the marginal improvement provided
by Action 2 over Action 1 is 0.2% . Table 1 summaries
the first four optimal actions and their corresponding per-
formance improvement. For illustrative purposes, using the
requirement that the marginal improvement needs to be at
least 0.5%,Thresh = 0.5%, to justify an Action, then the
contingency policy for Scenario I is limited to Action 1. In
Figure 5, the removed routes and retained routes based on
the optimal contigency policy are indicated in the histogram
by lighter and darker shading, respectively. In order to justify
the cost of updating the WSN with the new contigency policy
[

O
(q)
SD,baseline − O

(q)
SD,new

]

= 0.094 > P
(q)
SD,new/εT

(q)
H . If this

inequality holds, then the nodes affected by the change would
need to be updated with the new contingency policy.

TABLE I

SCENARIO I - SUMMARY OF OPERATIONAL COSTS BASED ON SEQUENCE

OF CONTINGENCY POLICY ACTIONS.

Scenario I Action Oper. Cumul. Marginal
Cost Improve. Improve.

Baseline 4.33
Action 1 U0 : H

−
19 4.23 0.09 (2.2%) 0.094 (2.2%)

Action 2 U18 : H
−
20 4.22 0.10 (2.4%) 0.009 (0.2%)

Action 3 U10 : H
−
20 4.22 0.11 (2.6%) 0.007 (0.2%)

Action 4 U11 : H
−
20 4.21 0.12 (2.8%) 0.007 (0.2%)

The same approach was applied to evaluating the optimal
contingency policy for Scenario II and III. For both of these
scenarios the optimal route is[H0, H9, H20, H39] with corre-
spondingNTx(·) = 5.42 and NTx(·) = 7.71, respectively.
Table II summarizes the sequence of optimal actions and



corresponding operational costs and marginal improvements
for both scenarios. Based on usingThresh = 0.5%, for
Scenario II the contingency policy requires the first 3 Actions
and for Scenario III the contingency policy requires the first 6
Actions. Figures 6 and 7 depict histograms ofNTx based
on the 33 3-hop routes for Scenario II and Scenario III,
respectively. Routes associated with the optimal contingency
policy are shaded darker.

Table III provides an overall summary of the results for
the three scenarios. Operational costs are presented for the
baseline performance, i.e., all 3-hop routes are considered
equilikely under the operational environment. Operational
costs are also presented for the optimal contingency policy
based on results given in Tables I and II. In addition, the
minimum NTx based on the optimal route is provided for
comparison. The goal of the PPM & CP functional block is
to provide an overall improvement in the energy efficiency
within the WSN. As can be observed from both Figures 6 and
7, for Scenarios II and III, the optimal contingency policies
removed routes with lowerNTx in order to reduce the number
of actions required by the centralized PPM & CP functional
block. Thereby, the overall energy efficiency is maximized by
balancing the trade-off between minimizing theNTx required
to route messages against the cost of implementing the policy.

TABLE II

SCENARIO II AND III - SUMMARY OF OPERATIONAL COSTS BASED ON

SEQUENCE OF CONTINGENCY POLICY ACTIONS.

Scenario II Scenario III
Action Oper. Cost Action Oper. Cost

(Mar. Imp.) (Mar. Imp.)
Baseline 5.99 8.90
Action 1 U0 : H−

19 5.89 (1.60%) U0 : H−
19 8.46 (5.00%)

Action 2 U0 : H−
12 5.80 (1.53%) U0 : H−

12 8.35 (1.28%)
Action 3 U0 : H−

11 5.76 (0.78%) U0 : H−
11 8.29 (0.70%)

Action 4 U18 : H−
20 5.73 (0.37%) U18 : H−

20 8.23 (0.69%)
Action 5 U0 : H−

10 8.19 (0.55%)
Action 6 U18 : H−

29 8.14 (0.58%)
Action 7 U0 : H−

07 8.12 (0.29%)
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Fig. 6. Distribution of the Number of transmissions over the3-Hop routes
for Scenario II.

7.5 8 8.5 9 9.5 10 10.5 11
0

1

2

3

4

5

6

7

8

N
Tx

N
um

be
r 

of
 R

ou
te

s

Removed Routes
Routes − Contingency Policy

Fig. 7. Distribution of the Number of transmissions over the3-Hop routes
for Scenario III.

V. CONCLUSION AND FUTURE WORK

Energy consumption among the wireless devices partici-
pating in WSNs constrains the development and implemen-
tation of a broad range of applications. The PPM & CP
methodology introduced in this paper provides a strategy for
updating the operational mode of the WSN which minimizes
energy utilization due to the time varying characteristicsof
the networks operational RF environment. An approach for
using the PPM & CP strategy for optimizing the multi-
hop routing was developed and shown to find the optimal
routes. The advantage of using this approach was illustrated
for a Bluetooth network in an IEEE 802.11b interference
environment. By developing contingency plans off line for
various scenarios we can minimize the updates needed when
interference changes, only updating the nodes which have
a change in their policy. In the long run this method will
reduce the overall transmissions and lead to substantial energy
savings.

In the future, we plan to investigate the effectiveness of the
MDP based approach when the size of the WSN is scaled up to
the order of 1000’s of nodes. We plan to study methods where
we can reduce overall policy computation costs by identifying
similarity in scenarios before policy computation. This would
facilitate computing policies for classes of scenarios instead of
individual scenarios. Finally, we plan to investigate methods
to make the centralized policy computation online. This might
necessitate the need for a near-optimal policy instead of the
optimal policy. We would like to study the trade offs of using

TABLE III

PERFORMANCE SUMMARY FOR THE THREE INTERFERENCE SCENARIOS

Oper. Cost % Improv. Over Baseline
Opt.

Scen. Min Base- Opt. Cont. Opt. Cont. Opt.
NTx line Policy Policy Min NTx

I 4.08 4.33 4.23 2.2 5.8
II 5.42 5.99 5.76 3.9 9.5
III 7.71 8.9 8.14 8.6 13.4



a near-optimal policy.
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