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Abstract
Concept maps are a core feature supporting the design,
development, and improvement of online courses and
educational technologies. Providing hierarchical ordering of
the concepts allows for a more detailed understanding of
course content by indicating pre- and post-requisite
information. In this research, we implement an end-to-end
domain-independent system to generate a concept map from
digital texts that needs no additional data augmentation. We
extract concepts from digital textbooks on the domains of
precalculus, physics, computer networks, and economics.
We engineer seven relevant features to identify prerequisite
relationships between the concepts. These prerequisites are
then used to generate and visualize a hierarchical concept
map for each course. Our experiments show that the
proposed methodology exceeds the existing baseline
performance in existing domains including physics and
computer networking, by up to 14.5%. Additionally, human
evaluation identified four common errors between the
prerequisites found through use of the concept maps. Our
findings indicate that our methods, which require minimal
data preprocessing, can be used to create more informative
concept maps. These concept maps can be leveraged by
students, instructors, and course designers to improve the
learning process in a variety of domains.

Introduction

Students need prior knowledge for thorough understanding
of educational content, which imparts an implicit order of
the concepts in the learning process (Chaplot et al. 2016).
These concepts or skills are known as knowledge
components (KCs), which are formally defined as an
acquired unit of cognitive function or structure that can be
inferred from performance on a set of related tasks
(Koedinger et al. 2012). The KCs represent the knowledge
a student needs in order to successfully solve a particular
problem. There is a prerequisite relationship between KCs,
as a student might need to know certain KCs before they
can successfully solve a problem requiring a different KC.
For instance, if a student was solving a “multiplication”
problem, they might fail because they do not know how to
do “addition”, which is a prerequisite of the former. This
can create problems, as instead of having the student work
on problems relating to “multiplication”, it would be best
to have them first practice and gain an understanding of
“addition” (Matsuda et al. 2016).

One form of representing these KCs and their
prerequisites is a concept map, which represents domain

content and their learning dependencies (Liang et al. 2015).
Concept maps have been used to represent the KCs in
online courses, such as MOOCs, indicating the prerequisite
relationships that exist between them (Watson et al. 2018).
These maps can be leveraged by students in browsing
course materials, emphasizing important topics in a course
and how they are related, to improve students’
understanding of the material (ALSaad et al. 2018).
Typically a domain expert or experienced instructor
manually constructs a concept map (Stamper et al. 2010).
However, this traditional way is often time-consuming and
not scalable to a large number of concepts or to the amount
of online courses being generated (Chen et al. 2018).
Additionally, the construction of concept maps this way
might be error-prone due to a reliance on expert knowledge
to determine the relationship between concepts and their
prerequisites from expert blindspot (Nathan et al. 2001).
This indicates that an expert’s cognition and learner’s
cognition of certain concepts may not align, causing the
manually created concept maps to be suboptimal or
misleading for learners.

To assist in avoiding these scaling and expert blindspot
problems, recent research has leveraged machine learning
methods to automatically identify prerequisites and
generate concept maps (Yu et al. 2020). Concept maps
have been automatically generated using datasets of
educational content gathered from online courses such
Coursera, Udacity, and Wikipedia (Liu et al. 2020).
However, much of this work is done in the vein of
advancing the machine learning methods used in the
process, rather than focusing on how the generated concept
maps can be effectively leveraged towards educational
outcomes. Oftentimes these methods use a variety of
datasources in addition to the instructional content, such as
student performance data on the material (Chaplot et al.
2016). This can make these methods difficult to use for
new courses or courses that do not have thousands of
students working through them. While concept maps can
be leveraged by recommendation systems and learning
analytic systems, there needs to be a way to assess the
quality. To evaluate the effectiveness of concept maps as a
learning tool, they should be both accurate and easily
understandable by both students and instructors when



identifying areas of the course to focus on (Gorman &
Heinze-Fry 2015).

This paper introduces and analyzes an end-to-end novel
system for automatically generating concept hierarchies
from digital textbooks irrespective of their domain. We
start with concept extraction using a textbook's index and
then engineer features from it to train a machine learning
model to predict prerequisite relationships between concept
pairs. Following this, a hierarchical concept map is
generated using the predicted relations between concepts
found in textbooks. Finally, we visualize these concepts
and have two expert instructors evaluate the results for
completeness of topic coverage and usefulness for course
design. The primary contributions of this paper are the new
features we propose and utilize to generate the
prerequisites and concept maps, expanding on previous
results (Alzetta et al. 2019). We demonstrate how this
approach beats the existing baselines and provide our
open-source code for others to use. Finally, we provide
generalizable errors identified by human evaluation of the
concept maps, with suggestions for overcoming them in
future work.

Background

The proposed system is an end-to-end solution to generate
concept maps from textbooks belonging to a variety of
domains. Prior work in the field essentially splits the
process of creating a concept map into extracting concepts
and identifying which concepts are prerequisites of another
concept. Much of this work exists for the advancement of
machine learning techniques, while our system is focused
on the educational value of assisting instructors and
students.

One of the first steps for generating concept maps and
indicating the prerequisite relationships between them is
identifying the relevant concepts themselves, which is
known as concept extraction (Atapattu et al. 2012). The
granularity of these concepts can range from a fine-grained
KC (Koedinger et al. 2013) to a high-level concept, such as
a chapter found in a textbook, depending on the project (Lu
et al. 2019). Traditionally, previous research identifies
concepts for extraction at a granularity between these two
levels, such as the work of Chen et al. (2018), which
derived concepts based on the national standards for
mathematics in primary and secondary schools. To perform
the concept extraction, Chau et al. (2021b) leveraged a
supervised feature-based machine learning model that was
built upon several popular methods centered around
extracting keyphrases from text. They compared their
model’s output to human experts and found that the
extracted concepts matched with a majority of the expert
annotations, even outperforming several baselines for
concept extraction. A related study took a different
approach and leveraged humans to annotate the concepts
found on different web pages related to real estate through
different self-review and peer-review processes (Chau et al.
2020). They found that the human annotations served as a

quality evaluation of different machine learning models
and depending on the model, the human annotations may
cause the evaluation metrics to fluctuate.

With the potential concepts identified, the next step in
the process involves identifying the prerequisite
relationships between them. A concept C1 is generally
called a prerequisite to another concept C2 if the
knowledge of C1 is necessary to understand C2
(Johnson-Laird 1980). Previous research has leveraged
popular machine learning models, such as neural networks
and random forest, in order to infer the prerequisite
relationships between concepts (Roy et al. 2019).
Oftentimes the methods that utilize such models require
ample training data, in the form of labeled prerequisites or
student data that can be used to infer which concepts might
be reliant on others (Li et al. 2020). One method for
prerequisite identification by Wang et al. (2016) devises a
set of features extracted from both textbooks and
Wikipedia, then uses a Support Vector Machine (SVM) to
identify the prerequisites. With this approach, they were
able to achieve moderately accurate results in the domains
of economics, computer networks and physics. Related
work by Pan et al. (2017) also proposed a set of features
based on syntactic relationships and semantic relatedness
of concepts, extracted from course textbooks and videos, to
discriminate prerequisite relationships. They carried out a
detailed comparison using these features with several
machine learning models, including both SVM and random
forest. Their results showed that the random forest model
was the most effective in prerequisite identification, which
informed our choice of using random forest for our
prerequisite identification approach.

The extracted concepts and prerequisite relationships
identified between them can be visualized in the form of a
concept map, which is a graphical representation where
concepts are nodes and directed edges between them
represent the prerequisite relationship (Mohamad Rasli et
al. 2014). Typically visualization software is used to create
the concept maps, so they can be evaluated by human
experts (Cañas et al. 2005). If human experts are creating
them and taking part in the entire process of concept
extraction, prerequisite identification, and concept map
visualization, then they might do so using tools of their
choice, often drawing them by hand (Schwendimann
2016). Much of the prior work on concept extraction,
prerequisite learning, and concept maps fails to evaluate
the practicality and usefulness of the output concept map
(Roy et al. 2019). Concept maps can be fed into
educational technologies, to help power adaptive learning
and model student learning (Huang et al. 2016). Student
models can assist with adaptation and personalization in
student learning (Stamper et al. 2007). However, concept
maps can also assist instructors in ensuring their course
covers essential material or by ensuring that their students
have sufficient prior knowledge before exposing them to a
new concept (Zeng et al. 2009). Similarly for students, if
they are to use a concept map to identify key topics
covered in a course or to help guide their plan of study, the
concept map needs to be parsable by the student.



Methodology

To build a concept map, we divide our system into several
components as shown in the architecture diagram in Figure
1. The first phase is to extract concepts from a given digital
textbook, containing instructional text in a single-column
format. For each of the extracted concepts, we then extract
features that will help us determine if a given concept pair -
(C1, C2), if C1 is a prerequisite for C2. Once the features
are extracted, we use a machine learning model for
identifying prerequisites and then use them to generate a
concept map. The following sections provide the technical
details behind the proposed system and the dataset used to
analyze its performance.

Figure 1: Overview of the end-to-end system architecture

While previous work has focused on concept extraction in
textbooks through using section headers, chapter titles, and
other book features (Liang et al. 2019), the present work
makes use of the index found at the end of the digital
textbooks. The index in such textbooks is specifically
designed to list the key terms and topics covered
throughout the book, along with a page number on where
they can be found. Therefore, we parse each word or
phrase found in the index of each digital textbook, remove
the page numbers that follow it, and treat it as a concept for
the purpose of this analysis. Additionally, we pruned
concepts that did not occur more than three times
throughout the given textbook. An example of the index
found in one of the textbooks used in this study can be
found in Figure 2.

Figure 2: Sample index from a textbook, where each
phrase on a line is treated as concept

Building upon an analysis of related features identified in
prior work (Pan et al. 2017)(Wang et al. 2016), we identify
the following seven features for pairs of concepts extracted
from the digital textbooks:
• Average Chapter Reference Distance: This feature

represents the average number of textbook chapters
found between two concepts. Wang et al. (2016)
suggested that a reference distance can indicate how
often the two concepts occur together. The intuition for
this feature is that the concepts that occur in earlier

chapters are likely to be prerequisites of material that
occurs in the latter chapters of the textbooks.

• Average Page Reference Distance: The average
number of chapter pages apart two concepts in a concept
pair are, if they occur in the same chapter in a textbook.
This feature is constricted by the maximum number of
pages found within a chapter, but follows similar logic to
the first feature.

• Average Sentence Reference Distance: The average
number of sentences apart two concepts in a concept pair
are, if they occur in the same page in a textbook.

• Average Position Distance: The average number of
words apart two concepts in a concept pair are, if they
occur in the same line in a textbook.

• Complexity Distance: Two concepts with a prerequisite
relationship typically have a difference in their
complexity level, as the prerequisite concept is often
basic and the other concept is more advanced. Pan et al.
(2017) indicated that the complexity level of a concept is
implicit in its distribution across a course or textbook.
The more often a concept occurs in the content, the
higher likelihood it is for it to be more basic of a
concept. Specifically, we can calculate the difference
between the number of times two concepts are
mentioned in a textbook using this formula:

Complexity Distance(C1, C2) = Count(C2) - Count(C1)
Based on the formula above, if the complexity distance
value is positive, then it is more likely that C2 is a
prerequisite of C1, rather than vice versa.

• Chapter Concentration: The F1 score of the number of
chapters each concept occurs in. The intuition is that if a
concept occurs in many chapters, it is more likely to be a
generic and basic concept in the educational resource,
rather than being a strict prerequisite. Note the similarity
to the fifth feature, however this one helps to downplay
concepts that occur constantly, such as “mean” in a
statistics textbook as being assigned a prerequisite to
everything. This feature will help identify it as a basic
concept, without necessarily being a prerequisite, using
the following formula:
Chapter Concentration=(Ch(C1)* Ch(C2))/(Ch(C1) +Ch(C2))
where Ch(C1) and Ch(C2) represent the number of
chapters concept C1 and C2 respectively occur in.

• Distributional Asymmetry Distance (DAD): This
feature represents a measure of how many times concept
C1 occurs before concept C2 (Pan et al. 2017). The
intuition behind this is, if C1 is a prerequisite and occurs
before C2, then C1 will be talked about before C2 in the
education resources. The following formula, along with
the parameters are:

DAD = alpha * NCh(C1, C2) + beta * NPage(C1, C2) +
gamma * NSent(C1, C2)

where, alpha, beta, gamma are hyperparameters,
NCh(C1, C2) is number of times C1 occurs in a chapter
prior to the chapter containing C2, NPage(C1, C2) is the
number of times C1 occurs in a page prior to the page
containing C2 if they are in the same chapter, NSent(C1,
C2) is the number of times C1 occurs in a sentence prior



to the sentence containing C2 if they are on the same
page.

These seven features are extracted for each concept pair
and fed into a random forest model. Random forest is a
supervised learning method that uses a collection of
decision trees to predict if the concept pair has a
prerequisite relationship or not (Lu et al. 2019). Random
forest models can implicitly deal with the class imbalance
(i.e. the dataset has more labeled prerequisites pairs that
non-prerequisite pairs) in the dataset that we will be using,
and was proven to be the most effective for prerequisite
learning by Pan et al. (2017) when compared to other
traditional machine learning models of SVM, naive bayes,
and logistic regression. We used the seven identified
features and all of the concepts extracted from the
textbook’s index to feed into our random forest model. The
model then outputs a classification label, corresponding to
one or zero, indicating if concept C1 was a prerequisite of
concept C2.

Figure 3: Visualization of a directed graph that represents a
concept map, where a node corresponds to a concept and
an edge points from prerequisite to the dependent concept

Concept map generation was completed using the output of
the random forest model. It contains the concept pairs and
their classification as prerequisite or not, which we use to
generate a visual representation in the form of a concept
map. The concept map takes the form of a directed graph,
as shown in Figure 3. A node in the directed graph is a
concept and an edge from concept C1 to concept C2
indicates that C1 is a prerequisite for C2. The concept pairs
with the predicted label, which indicate whether it is a
prerequisite or not, are stored as a CSV file and fed into the
visualization software known as Flourish (Liang et al.
2016). This was done to visually represent the concept map
for each textbook as a directed graph. Flourish is an online
platform to create interactive directed graphs, it takes as
input (C1, C2, classification label), where C1 and C2 are
the concept name and the classification label indicates if
there should be an edge from C1 to C2 that indicates C1 is
a prerequisite of C2.

Experimentation

The dataset used for assessing the concept hierarchy
generation system was the CMEB dataset (Wang et al.
2016). This dataset contains four textbooks across the
domains of Calculus, Economics, Physics and Computer

Networks. Each textbook has associated with it a list of
manually identified concepts. It also has a list of concept
pairs of the form (C1, C2) and a class label indicating if C1
is a prerequisite of C2 (class=1) or not (class=0). While the
dataset is relatively small for a machine learning-based
system, it is one of the few datasets that provides concepts
and prerequisites across multiple domains. This feature
was crucial to verify the accuracy and usability of our
system for concept map generation and ensuring that it
could work for multiple domains with no external data
besides the textbook. In the CMEB dataset, shown in Table
1, we see that precalculus has the largest textbook and
hence the largest number of concepts. However, we also
see that physics is the smallest textbook with the least
number of concepts, but it is the most well connected with
the highest number of prerequisites identified.

Domain Unique
Concepts

# Prerequisites # Non
Prerequisites

Precalculus 226 418 753

Economics 169 242 635

Physics 160 420 1097

Computer
Networks

200 416 1082

Table 1: CMEB dataset distribution spanning four domains

The performance of our system will be analyzed using
precision, recall, and F1 score. Precision will let us know
out of all the data we identify as concept/prerequisite pairs,
how many are actually concept/prerequisite pairs. Recall
helps us identify out of all the actual valid
concepts/prerequisite pairs, how many we were able to
identify as valid pairs. F1 score helps us to evaluate the
model by giving equal weight to both precision and recall.
The performance of the prerequisite learning module is
also compared against a baseline model proposed by Wang
et al. (2016).

Our heuristic approach of concept extraction from the
index was evaluated using precision and recall against the
concepts manually extracted by domain experts in the
CMEB dataset. In this CMEB dataset, several experts went
through the textbooks, and with the help of a knowledge
graph constructed from Wikipedia, identified concepts
found within the text. The features are then created
between all the pairs of concepts. If the concept pair is
present in the CMEB dataset with a label 1, then this
means C1 is a prerequisite for C2. If a concept pair is
present with label 0, then C1 is not a prerequisite for C2.
Thus, a dataset with the concept pair, features, and label is
created and passed to our prerequisite learning methods
which utilizes the random forest model.

In the prerequisite learning model, the dataset is
stratified and split based on the label value in a 60-20-20
fashion to create the training, validation, and test dataset.



We utilized the validation dataset to tune the
hyperparameters of the random forest model and set the
n_estimators as 200. We report our performance on the test
dataset in the results and discussion section.

To further evaluate the results of our prerequisite
learning model, we also utilized human evaluation. Two
researchers with seven or more years of experience in
teaching computer science were provided with the
visualization for Networks. They were asked to parse
through the concept map visualization and identify errors
such as unwanted prerequisites, missing prerequisites, and
anything else they deemed an error or that may hinder their
use of the concept map. A version of the computer
networking concept map visualization is made available
here: https://public.flourish.studio/visualisation/8954167/.

Results and Discussion

Concept Extraction Validation
Table 2 contains the precision and recall scores of our
concept extraction heuristic method, utilizing the index of
the textbooks, on the CMEB dataset. We see that precision
is low and recall is high across all four domains. The
precision is low because every term in the textbooks’
index, assuming it occurs more than three times throughout
the text, is considered a concept, compared to the CMEB
dataset where humans identified concepts based on their
knowledge. Also, there are a large number of false
positives partially because the index contains non-concepts
such as author name, software name, etc. The other reason
for low precision is because the index does contain valid
concepts, but the manual identification of concepts in the
CMEB dataset was not comprehensive enough, as they did
not exhaust all of the concepts covered in each textbook.
As a result, there are instances where the model accurately
detects a concept, but it is missing from the CMEB dataset.
The recall is high because a majority of the 200 or so
concepts the human evaluators identified in the CMEB
dataset are also terms in the index, so our concept
extraction methods identified them as well. Ultimately,
while this method using the index provides an easy way to
extract concepts, the low precision values are not ideal for
usage. Note, since the Physics textbook associated with the
dataset did not have an index we were unable to run our
extraction method  on this textbook.

Textbook Precision Recall

Computer Networking 0.08 0.84

Precalculus 0.11 0.74

Economics 0.07 0.78

Table 2: Precision and recall of the proposed heuristic
method for concept extraction across the four domains in

the CMEB dataset

Prerequisite Learning Validation
The precision, recall and F1 score of the random forest
model on our test set are reported in Table 3. We passed the
concept pairs from the CMEB dataset into our random
forest model to compare it to existing approaches using the
same concept pairs. We see that our proposed approach
beat the baseline approach proposed by Wang et al. (2016).
Specifically, our model’s results indicate that our
methodology exceeds the baseline's performance by 4.5%
for the Computer Networking textbook and by 14.5% for
the Physics textbook. We also observe that we were able to
achieve the best performance on the Physics textbook
which also had the largest number of prerequisites, even
though it had the least number of unique concepts in the
CMEB dataset.

Our model only beat the baseline on two of the four
courses, as it did not exceed performance on the
Precalculus and Economics courses. Notably, these two
courses have a much higher count of non-prerequisite
concepts in the CMEB dataset. Our model might be more
prone to false positives and thus could be misclassifying
the high number of non-prerequisites, causing its average
performance.

Textbook Precision Recall F1-Score F1-Score
(Baseline)

Computer
Networking

0.75 0.60 0.66 0.63

Physics 0.78 0.81 0.79 0.69

Precalculus 0.71 0.68 0.66 0.66

Economics 0.73 0.68 0.7 0.7

Table 3: Precision/Recall/F1 Score of the random forest
model for prerequisite learning across the four domains.

Analyzing the random forest model for prerequisite
learning, we identify the importance of the seven features
we utilized, shown in Figure 4. Based on this feature
importance, it appears that syntactic features, such as the
positioning of concepts in a concept pair across the
textbook, are a good indicator of whether two concepts are
prerequisites of one another. Some of the implications of
this are that the syntactic features such as positioning of
concepts in a concept pair across the textbook is a good
indicator of whether two concepts are prerequisites of one
another.

When we perform error analysis on the average page
distance reference feature, ranked a close second in
importance, we see that the number of prerequisites and
non-prerequisites have a wide range for positional features.
This indicates that prerequisite and non-prerequisite
concept pairs can be far away or close together, as shown
by the green histograms. However, the errors are made in
much smaller ranges, meaning discrimination between



prerequisites and non-prerequisites begins to fail when
concept pairs are located closer to one another. This
indicates that as concepts are syntactically located close in
the textbook, the feature set we have currently becomes
less discriminative. We aim to extend the current feature
set in future work to include features that can discriminate
between prerequisites and non-prerequisites when concept
pairs are positionally nearby each other.

Figure 4: The importance of features used in the random
forest model used for prerequisite identification

Human Evaluation
We developed concept maps from the concept pairs with
the predicted labels, which are available for public
viewing. In Figure 5, we see the portion of the computer
networks concept map represented as a directed graph. A
node in the directed graph is a concept and an edge from
concept C1 to concept C2 indicates that C1 is a
prerequisite for C2. e.g. the edge from Protocol Stack to
Transmission Control Protocol (TCP) indicates that
Protocol stack is a prerequisite to TCP. The color of the
node has no meaning and is just used only to tie the
concept label to its node in the visualization and help users
discern different nodes. Based on the manual evaluation of
the interactive concept map for Computer Networks by two
experts, they identified four common errors that we aim to
address as part of our future work.
• Absent Error: The prerequisite for the concept is

missing. In Figure 6(a) we see the “TCP”, a required
prerequisite for “HTTP persistent connection” is
missing.

• Extraneous Error: An additional prerequisite that is not
required is present. In Figure 6(c) we see that “File
Transfer protocol” has an unnecessary prerequisite
“BitTorrent”, which is related, but not a prerequisite.

• Transitive Error: The concept map indicates C1 is a
prerequisite for C2 and C3. However, the actual
mapping should be that C1 is a prerequisite for C2 and
C2 is a prerequisite for C3. In Figure 6(b) we see that
“2G” is a prerequisite for “3G” and “4G”. Ideally, “2G”
should be a prerequisite for “3G” and it would inherently

be a prerequisite for “4G”, as “3G” is a prerequisite for
“4G”.

• Direction Error: The graph shows C1 is a prerequisite
for C2, but it should be the other way around. In Figure
6(c) we see that “BitTorrent” is a prerequisite for
“Peer-to-peer file sharing”, however it should be the
other way around.

Figure 5: Visualization of concept hierarchy extracted from
Computer Networks as an interactive directed graph

(a) (b) (c)

Figure 6: Common error types that researchers identified in
the concept hierarchy visualization

Reducing these four common errors is our plan for future
work. Minimizing the Absent and Direction Errors would
enable the system to be used by educators more effectively
in the course design process. In particular, concepts being
absent from the concept map might be the most
challenging issues for users. Other problems, such as the
arrows being reversed, indicating the prerequisite
relationship is backwards, are easier to remedy as they do
not require the generation of new content or concepts.

Conclusion

In this paper, we propose a system that assists in the
generation of interactive concept maps for a variety of
domains. These concept maps can be leveraged by students
and instructors alike to identify gaps in their own
knowledge and assist in designing comprehensive courses.
The implementation of our system is an end-to-end
domain-independent system that extracts concepts,
engineers features from textbooks, identifies relationships
between concepts, and visualizes them as a concept map.
Experiments show that our methodology exceeds the



previous baseline performance by 4.5% for the "Computer
Networking" textbook and by 14.5% for the "Physics"
textbook. Human evaluation of the output concept maps
also identified four errors that are likely to occur in similar
prerequisite and concept map work. While our concept
extract method had precision problems, we observed that a
significant number of concepts in the index of a textbook
are not actually concepts (eg. company names), which
motivates future work towards a generic methodology for
concept extraction that can be done without excessive
preprocessing. As prerequisite learning research continues,
we suggest keeping in mind who might be able to make
practical use of these  visualizations.
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