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Editor’s Introduction

Advanced educational technologies are developing rapidly and online MOOC courses are
becoming more prevalent, creating an enthusiasm for the seemingly limitless data-driven
possibilities to affect advances in learning and enhance the learning experience. For these
possibilities to unfold, the expertise and collaboration of many specialists will be necessary to
improve data collection, to foster the development of better predictive models, and to assure
models are interpretable and actionable. The big data collected from MOQOCs needs to be
bigger, not in its height (number of students) but in its width—more meta-data and information
on learners’ cognitive and self-regulatory states needs to be collected in addition to correctness
and completion rates. This more detailed articulation will help open up the black box approach
to machine learning models where prediction is the primary goal. Instead, a data-driven learner
model approach uses fine grain data that is conceived and developed from cognitive principles
to build explanatory models with practical implications to improve student learning.
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In the midst of the recent high energy around massive open online courses (MOOCs) and other
forms of online learning (e.g., Khan Academy), it is worthwhile to reflect on what these efforts
may draw from and add to existing research in the learning sciences [1, 2]. Given that tens of
thousands of students may complete a MOOC course, there is legitimate excitement about
what we might learn from the great volumes of student interaction data that these courses are
producing. However, for that excitement to become reality, computer scientists joining in this
area will need to develop new expertise or forge collaborations with cognitive psychologists
and educational data mining specialists.

We recommend data-driven learner modeling to understand and improve student learning. By
data-driven learner modeling we mean the use of student interaction data to build explanatory
models of elements of learning (e.g., cognition, metacognition, motivation) that can be used to
drive instructional decision making toward better student learning. We frame this approach in
contrast to the traditional pedagogical model employed in higher education and mimicked in
MOOQOCs whereby “an expert faculty member's performance is the center of the course” [3].

This instructor-centered model typically includes, as do many MOOCs, questions to check for
student understanding, problems to apply ideas in practice, and perhaps even learn-by-doing
scenarios/simulations that require adapting concepts and skills in support of deeper learning.

However, these activities are still “instructor-centered” in that they are primarily designed
based on the intuitions of instructors, their conscious reflection on their expertise, and their

beliefs about what students should know.
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Our experience is that too much online course development is guided merely by instructor
intuitions. These intuitions are clouded by what we have called “expert blind spot” [4]—the
notion that experts are often unaware of the cognitive processes they utilize when performing
in their specialty area. Much expertise is tacit knowledge used in pattern recognition, problem
solving, and decision making, and experts’ self-reflections are often inaccurate about the nature
of their own tacit knowledge. For example, while most math educators judge story problems to
be more difficult for beginning algebra students than matched equations [5], student data
indicates the opposite: Students perform better on story problems (70 percent correct) than on
matched equations (42 percent correct; 4). Therefore, in contrast to instructional design based
purely on instructor intuition, course development should also be informed by the kind of data
that has repeatedly revealed flaws and limitations in the models of student learning implicit in
course designs.

Using data-driven models to develop and improve educational materials is fundamentally
different from the instructor-centered model. In data-driven modeling, course development
and improvement is based on data-driven analysis of student difficulties and of the target
expertise the course is meant to produce; it is not based on instructor self-reflection as found in
purely instructor-centered models. To be sure, instructors can and should contribute to
interpreting data and making course redesign decisions, but should ideally do so with support
of cognitive psychology expertise. Course improvement in data-driven modeling is also based
on course-embedded in vivo experiments (multiple instructional designs randomly assigned to
students in natural course use, also called “A/B testing”) that evaluate the effect of alternative
course designs on robust learning outcomes. In courses based on cognitive science and data-
driven modeling, student interaction is less focused on reading or listening to an instructor’s
delivery of knowledge, but is primarily about students’ learning by example, by doing and by
explaining.

Successes in Data-Driven Course Improvement

Both qualitative and quantitative techniques that combine subject matter expertise with
cognitive psychology have been developed and successfully applied to educational data in
numerous domains. We provide several examples to illustrate how data can be used to inform
instruction.

Cognitive task analysis based on qualitative analysis of verbal data. Cognitive task analysis
(CTA) focuses on the psychological processes behind task performance. More specifically, CTA
uses a variety of techniques to elicit the knowledge of experts and differentiate between the

critical decision making of experts and novices. It is a proven method for discovering latent
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variables and unraveling some of the complexities of domain-specific learning. This method
incorporates elements of cognitive psychology and domain expertise, and requires a high level
of human interpretation of the data. By increasing the volume (e.g., as collected from MOQCs)
and density (e.g., more frequent well-designed observations bearing on learners’ cognitive and
self-regulatory states) of data, the need for human interpretation and the potential for
subjectivity can be reduced but it cannot be eliminated.

The success of various types of cognitive task analyses has been demonstrated in a variety of
courses where newly discovered factors led to course modifications and better student
learning. Velmahos et al. used a CTA with surgeons to make improvements to a course on
catheter insertion for medical interns [6]. When compared with the pre-existing course, the
data-driven course redesign resulted in higher posttest scores and better surgery results (e.g.,
50 percent fewer needle insertions). Lovett employed a CTA with statistics’ experts and
discovered a “hidden skill” (variable type identification) as part of planning a statistical analysis
[7]. We say “hidden” because expert instructors were not consciously aware of performing this
planning step, nor were they aware of students’ difficulty with it. In using data-driven insights
like these, interactive activities were designed for students to practice such hidden skills [8];
these activities are also a key part of the Open Learning Initiative's online “Probability and
Statistics” course. A randomized trial comparing blended use of this online course in a half
semester to the preexisting full-semester course found students using the online course not
only spent half the time learning, but learned more as demonstrated on a post-test measuring
their conceptual understanding of statistics [8].

Cognitive task analysis based on quantitative analysis of educational technology data.
Traditional CTA techniques use qualitative data (e.g., interviews with instructors and students)
to assist in making pedagogical decisions for course improvement. We have developed
guantitative approaches to conducting CTA that are more efficient and scalable. The data
generated from observing student performance is used to discover hidden skills and support
course improvements. Early work of this kind involved comparison of student performance on
systematically designed task variations designed to pinpoint what  tasks
(problems/questions/activities) cause students the most difficulty. These so- called “difficulty
factor assessments” have led to many discoveries, perhaps the most striking of which is, in
contrast to math educators predictions, algebra students are actually better at solving story
problems than matched equations [5]. Results such as these have been critical to the design
and continual improvement of the “Cognitive Tutor Algebra” course, now in use by some
600,000 middle and high school students a year. The most recent of many full-year randomized
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field trials involved 147 schools and showed students using the “Cognitive Tutor Algebra”
course learned twice as much as students in traditional algebra courses [9].

Heffernan and Koedinger employed a difficulty factors assessment that suggested the skill of
composing multiple-operator expressions (e.g., as exercised in tasks like “substitute 40x for y
in800-y”) is, surprisingly, a hidden component of translating story problems to equations [10].
Koedinger and McLaughlin ran an in vivo study (an A/B test) replacing some story problem
practice with such substitution tasks [11]. They demonstrated significantly better learning on
complex story problem translation for students who had more opportunities to practice
substitution than those who did not. Stamper and Koedinger used a learning curve analysis of
geometry tutor data to discover a hidden planning skill on problems that cannot be solved by
simply applying a single formula [12]. Koedinger, Stamper, McLaughlin, and Nixon redesigned
the tutor based on this discovery and compared it with the prior tutor in an in vivo experiment
[13]. Students using the redesigned tutor reached tutor-determined mastery in 25 percent less
time and did better on a paper post-test, especially on difficult problems requiring the hidden
planning skill that was discovered.

The previous examples are just a few illustrations of the power of using data to improve
instruction. A key question than is how learning environments and data collection systems can
be best designed to “yield data that transform into explanatory models of a student’s learning,
and also support course improvement” [3]? Having an understanding, an explanation, of how
and why a model better predicts puts one in a much better position to use that understanding
to make specific course redesigns.

Opportunities for Improving MOOCs

Before addressing the question of how to use data for improving MOOCs and courses in
general, we first address the crucial question of designing learning activities to enhance data
collection. Good course instrumentation for data gathering requires presenting complex tasks
that represent learning objectives and identify students’ intermediate thinking processes as
they perform these difficult tasks. Using strategies that emphasize student activity and scaffold
student reasoning processes will help improve the quality of data, improve the inferences that
can be made from data, and thus lead to better instructional design decisions (e.g.,
instructional modifications, re-sequencing of tasks).

Data-gathering. To build explanatory and actionable models, we need data that is fine grained
in time and in thinking units. Observations that are finer grained in time provide more gradable
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student actions per minute. Observations that are finer grained in thinking units help unpack
how students are thinking, reasoning, or arriving at decisions. Many activities in MOOCs and
online courses (e.g., multiple choice questions about simple facts) are too simple to provide
much insight into student understanding and ability to apply what they have learned. Other
activities are more complex, but only solicit final answers without recording intermediate
reasoning steps. In Figure 1, for example, we see two entered answers (Parts A and B) for a
complex physics problem without any of the steps, such as drawing the free body diagram or
entering intermediate equations, leading up to these answers. The volume of such coarse grain
data that are coming out of MOOCs will be of limited value, even if vast.

In Figure 2, we see a physics problem similar to the problem in Figure 1. However, in this case,
students enter intermediate steps such as drawing vectors and writing a sequence of equations
before offering a final solution. Such finer grained data provide more meaningful assessment
beyond proficiency or completion, providing potential insights into aspects of reasoning or
problem solving that are particularly challenging for students. Note in both examples students
can make multiple (incorrect) attempts before arriving at a final (correct) solution.

Block on an Incline Adjacent to a Wall
Part A

A wedge with an inclination of angle @ rests next to Find the magnitude, F..,. of the sum of all forces acting on the block

a wall. A block of mass ™ is shding down the

plane, as shown. There is no friction between the
wedge and the block or between the wedge and the Foue = mgsing
horizontal surface

Express F., in terms of # and m, along with any necessary constants,

Correct

submit hints my answers show answer review part

Find the magnitude. F,, . of the force that the wall exerts on the wedge

Express F,, interms of # and m, along with any necessary constants.

mgcos| 2a)
2

submat  hints _my answess Show answet _roview part

of !mm_ﬂ
The correct answer does not depend on the vanable: 7.

Figure 1. Coarse-grain data collection is illustrated in an online physics homework system called
“MasteringPhysics,” where students use the keyboard to enter a final answer to a problem (e.g., in Part B an
incorrect expression for the magnitude of a force F,,, is provided by a student). In a single activity (a problem to
solve), just two gradable student steps are observed and stored in the data log for later analysis. Source: Pearson

MasteringPhysics.
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Explain further OK 8 |
T: When an object is supported by a surface, the = |
2 9.
surface exerts a normal force on it. The normal v L]
For Help, press F1 I00:09:16 |SCORE: 20

Figure 2. Fine-grain data collection is illustrated in a physics intelligent tutor, Andes, where students use mouse
clicks and the keyboard to draw diagrams (e.g., the coordinates and vectors are drawn over the given problem
image in the middle left); define quantities (e.g., the variable TO is defined as “the instant depicted” in the upper
right); and enter equations (e.g., a first equation, “Fg_y+F1_y=0", which is incorrect, is shown in the middle right).
In a single activity (a problem to solve), about 20 gradable student steps are observed live by the tutoring system,
and stored in the data log for later analysis. Source: The Andes Project.

Activities can be more finely instrumented by providing workspaces (e.g., a free body
diagramming tool or an equation solving worksheet) as illustrated in Figure 2 or by adding
scaffolding that prompts for intermediate solution products (e.g., asking for converted fractions
before their final sum). Intelligent tutoring systems [14] and some online courses [8] do support
this finer grain action collection and, further, add data about timing, correctness, and amount
of instructional help needed. Such data are much more informative than simple single-answer
correctness. It is precisely this kind of fine-grained, multi-featured observations that are found
in datasets in DataShop [15].
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Much like the intricacies of a CTA that uncover the cognitive processes behind an observable
task, making student thinking visible in an online activity is about more than having them "show
their work" as they would on paper. First, there is the challenge of designing an interface or Al
technology such that the work is computer interpretable. Second, it is often desirable to have
students indicate their thinking in ways that they might not normally do on paper. As an
example of both, consider asking students to explain the steps they take in solving geometry
problems (e.g., by entering "the sum of the angles of a triangle is 180" to justify that 70 is the
value of a given angle). Prompting students to perform such “self-explanation” has been
experimentally demonstrated to enhance learning in math and science domains. Computer
interpretation of student explanations has been achieved through both structured interfaces
(e.g., menus of alternate explanations) and natural language processing technology. Structured
interfaces are effective in enhancing student learning [16], but it remains an open question
whether the extra effort of implementing natural language processing leads to further learning
gains [17].

Beyond black box models: From predictive to explanatory and actionable models. In addition
to avoiding the pitfall of developing interactive activities that do not provide enough useful
data to reveal student thinking, MOOC developers and data miners must avoid potential pitfalls
in the analysis and use of data. One such pitfall is the application of sophisticated statistical and
machine learning techniques to educational data without understanding or contributing to
relevant cognitive and pedagogical principles. This “black box model” approach focuses on
improving prediction without regards to understanding what is happening cognitively (i.e.,
inside the box). Such understanding provides a means for instructional improvement as we
illustrate below. It requires using analysis methods that focus on developing explanatory
models to produce interpretable insights. Such insights advance understanding of learning and
produce recommendations for improved educational practices.

One step toward explanatory models is annotating data sets with theoretically motivated labels
or semantic features. DataShop helps researchers label student actions, such as the steps in
Figure 2, with factors that might cause students difficulties in doing or learning. For example,
one such hypothesized difficulty is whether steps in a geometry tutor require students to apply
an area formula “backwards” (i.e., when the area is given) rather than the usual forward
application (i.e., finding the area). To our surprise, a model incorporating this distinction across
all formulas did not predict student data better than one without this distinction. However, we
then used a model discovery algorithm [18] to find a particular situation, the circle area
formula, where making a backward-forward distinction did improve model prediction. We
return to the question of why in a moment, but it is worth highlighting that this learning factors
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analysis (LFA) algorithm has been used on many DataShop data sets to discover better cognitive
models of domain skills across a variety of domains (math, science, and language) and
technologies (tutors, online courses, and educational games) [18]. LFA is an instance of a
guantitative CTA discussed above.

Having well-labeled variables is important for developing explanatory models, but it is not
sufficient. A second step toward explanatory and actionable models is applying psychological
theory to interpret data-driven discoveries in terms of underlying cognitive processes. We
started to interpret the better prediction of a model that splits, rather than merges, the
forward versus backward applications of circle area by first verifying that the circle-area-to-
radius (backward) steps were harder than circle-radius-to-area (forward) steps. An explanation,
then, should indicate a cognitive process needed for the harder task that is not needed for the
easier task: In this case, to undo the area formula (A = it r2) to find r requires knowing when to
employ the square root operation. Finally, armed with such an explanation, a course developer
can take action. The suggested action is to develop instruction and problems that better teach
and practice the process of determining when to use the square root operation.

In general, more sophisticated algorithms need to be developed that unleash the potential
instructional and learning benefits available from the big data obtained from MOQOCs. But, to
simply offer improved predictions (the standard goal in machine learning) without meaningful
scientific discovery and practical implications is not sufficient. Instead, explanatory models of
students are needed that uncover critical insights (e.g., that beginning algebra students are
better at story problems than matched equations) or important nuances of student learning
(e.g., that equations with “-x” terms are harder than ones with terms with numeric coefficients
such as “3x”) [19] so as to support improved instruction and learning.

A model that makes more accurate predictions may not be insightful or actionable. Conversely,
a model that only produces small prediction improvements may nevertheless produce
actionable insights. In fact, the models produced by LFA typically yield only small (but reliable)
reductions in prediction error. Nevertheless, such models have been usefully interpreted to
suggest modifications to improve educational materials. Randomized controlled experiments
have demonstrated that such modifications can yield reliable and substantial improvements in
student learning efficiency and post-instruction effectiveness [13].

Conclusion

There are great opportunities for improving MOOCs through data-driven learner modeling.
However, the computer science community needs to better recognize and engage the existing
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state of knowledge in learning science and educational data mining. If not, the rich volume of
principles of learning and instruction already produced by learning science research is at risk of
being very slowly rediscovered by the new players to online course development. Educational
data mining research has established a great potential for insights on student cognition,
metacognition, motivation, and affect [20]. These insights have been possible only because the
data used to derive them has come from student learning interactions that are both complex
and fine-grained—of the kind produced in intelligent tutoring systems or other online activities
involving multi-step interfaces (e.g., simulations, games, mini-tutors) [21]. Further, these
insights have been used to make design changes in online systems and, in some cases,
experiments have demonstrated significant improvements in student learning, metacognition,
or motivation by comparing the redesigned system to the original one [13].

Using data-driven learner models to improve courses contrasts with the instructor-centered
model in three key ways. First, course development and improvement is based not solely on
instructor self-reflection, but on a data-driven analysis of student difficulties and of the target
expertise the course is meant to produce. Second, course improvement is based on course-
embedded in vivo experiments that evaluate the effect of alternative course designs on robust
learning outcomes. Third, course interaction is not centrally about instructor’s delivery
knowledge, but about student learning by example, by doing and by explaining.

For data-driven learner modeling to yield greater understanding and improvement of student
learning, we recommend more emphasis on (a) exploratory data analysis in addition to machine
learning, (b) simpler models with fewer parameters as well as highly complex models, (c) use of
explicit research questions to drive analyses, and (d) inclusion of cognitive psychology expertise
to guide online activity designs that make thinking visible and to aid interpretation of model
results.

More finely instrumented activities are not only valuable for making thinking visible and
improving data for cognitive diagnosis, such fine-grain data are crucial to systems that are now
making reliable inferences about students’ motivations and affective states [20]. While the
examples above have emphasized monitoring and analyzing cognitive functions, such as
reasoning and problem solving, other educational data mining research has investigated roles
of metacognition, motivation, and social dialogue in learning.

There are some good signs of recent progress in useful mining of MOOC data [22, 23], but more
such work is needed. MOOCs and other forms of online learning provide a tremendous
opportunity to enhance education and diversify learning if productive collaborations are
formed and pitfalls of insufficient data-gathering and black box prediction are avoided. The
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more than 450 datasets already available in DataShop offer opportunities to develop data-
driven models of learners that include conceptual understanding, cognitive skills, metacognitive
and learning skills, general dispositions and motivations toward learning, and specific states of
affect (e.g., confusion or flow) during learning [15]. These data-driven learner models provide
great potential to advance both learning science and educational practice.
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