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ABSTRACT 

Traditional experimental paradigms have focused on executing 

experiments in a lab setting and eventually moving successful 

findings to larger experiments in the field. However, data from 

field experiments can also be used to inform new lab experiments. 

Now, with the advent of large student populations using internet-

based learning software, online experiments can serve as a third 

setting for experimental data collection. In this paper, we 

introduce the Super Experiment Framework (SEF), which 

describes how internet-scale experiments can inform and be 

informed by classroom and lab experiments. We apply the 

framework to a research project implementing learning games for 

mathematics that is collecting hundreds of thousands of data trials 

weekly. We show that the framework allows findings from the 

lab-scale, classroom-scale and internet-scale experiments to 

inform each other in a rapid complementary feedback loop.   
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1. INTRODUCTION 
Web-based software is creating an explosive growth in the use of 

randomized controlled experiments in education, due to the 

relative ease with which users can be randomly assigned to 

different experimental conditions. Scientists are beginning to 

recognize the coming data surge and developing new ways of 

analyzing data at "internet scale." The vastly increased scale of 

subject populations online can produce a categorically different 

mode of experimentation in education. For this reason, we 

propose a new experimental framework that takes advantage of 

rapid internet-scale experimentation, while retaining the control of 

lab-scale and classroom-scale experiments.  

Randomized controlled trials are regularly used to drive design 

decisions on the internet. In its simplest form, A/B testing is a 

form of experimentation where one of two advertisements are 

randomly delivered to each incoming site visitor. This allows 

advertisers to determine which advertisement results in improved 

outcomes (such as a greater click-through rate) [3]. Multiple tools 

exist to support website optimization, including the free Google 

Site Optimizer that supports both A/B tests and multi-variable 

testing. Recently, free-to-play online game companies, such as 

Zynga, have made use of large-scale optimization experiments 

with their large number of online players. By randomly assigning 

players to hundreds of different game design configurations, they 

can optimize the game design to maximize the conversion of 

players to paying customers [7].  

2. Internet Scale Research in Education 
Internet-scale research introduces new potential methods in 

Educational Research. For instance, optimization experiments like 

Response Surface Methods, are a common applied research 

method for improving industrial process outcomes. These 

experimental designs showed early promise for improving 

educational outcomes [5], but because the designs would have 

required many hundreds of students, they were expensive and 

impractical. Internet-scale research can now support these 

optimization experiments, along with these other experimental 

advantages: 

Increased number of conditions. With tens of thousands of “user-

subjects,” internet-scale research studies present the opportunity 

for researchers to run dozens—even hundreds—of different 

experimental conditions simultaneously. This easily contrasts with 

lab or field-scale studies, where available resources and subject 

pools typically constrain experimental designs to fewer than 8 

experimental conditions. Furthermore, with fewer conditions, 

experiments can be conducted within days, rather than months. 

Ability to measure “true” task engagement. Internet-scale 

research is also uniquely suited for measuring task engagement. 

Because the researcher typically lacks control over participants 

(they can quit far more easily than in lab or classroom 

experiments), the internet is an ideal setting for investigating user 

motivation. If players assigned to condition A play significantly 

longer than players in condition B (i.e., were engaged in the task 

for longer), then condition A can be said to be more engaging than 

condition B. The ability to measure and compare engagement 

makes it possible to measure how different design elements and 

configurations affect player engagement.  

Increase in external validity. A third advantage of internet-scale 

research is the high external validity—experiments are conducted 

with actual “real-world” users. While the lack of control over 

subjects can result in noisy data, this noise is useful for preventing 

over the over-fitting of predictive models that constructed for use 

“in the wild.”  

Greater access to all users. A fourth advantage of internet-scale 

research is the fact that informed consent is not required if the 

users are anonymous. Even with educational exemptions to 

informed consent, parental opt-out forms can still pose a barrier to 

many field-based educational studies. While researchers could 



 

 

potentially make use of informed consent (and thus obtain non-

anonymous data), anonymous data collection is likely to remain a 

characteristic of most large internet-scale research. 

Of course, the lack of information about participants is also a key 

drawback of internet-scale research. Broadly speaking, internet 

scale studies cannot collect rich information about participants. 

Therefore, these studies are unlikely to be suitable when research 

questions require demographic data, detailed pre/post tests, 

participant observation, talk-aloud protocols, or any kind of 

psychophysiological measure. Finally, the lack of participant 

control means that internet scale studies may not be appropriate if 

repeated participation over time is required. 

Given these drawbacks, it is clear that traditional lab based 

experiments and structured field trials still provide valuable data 

that internet scale experiments cannot. However, there is much to 

be gained from internet scale studies. The Super Experiment 

Framework (SEF) seeks to illustrate how different scales of 

experimentation can productively inform one another. The SEF 

framework, seen in Figure 1, is split into three general 

experimental parts that are roughly delineated by scale. Lab-Scale 

experiments are smaller highly controlled studies that take place 

in a lab or single classroom, generally not exceeding 50 

participants. School-Scale experiments are formal experiments 

that take place in multiple classrooms or schools consisting of 

hundreds to thousands of participants. Internet-Scale experiments 

are informally delivered online to thousands to millions if 

participants. 

 

Figure 1. The Super Experiment Framework showing how 

each of the component scales informs the others. 

In the SEF framework, each component provides an experimental 

level that can be used to answer specific questions that might be 

difficult or impossible to answer using one of the other 

components. Further, the various components can be used to 

expand or validate findings of the other components. A feedback 

loop can also be used with the framework where internet scale 

experiments can identify areas of focus for lab scale experiments, 

which can then be validated in school scale experiments. An 

overview of each of the SEF components can be seen in Table 1. 

School scale and lab scale experiments typically recruit subjects 

and then randomly assign them to different experimental 

conditions as part of a single experiment. However, internet-scale 

research creates situations where multiple experiments are 

randomly drawing from the same pool of subjects. Just as a single 

experiment contains multiple experimental conditions, the SEF 

contains multiple experiments. Because the different experiments 

are derived from the same pool of random assignment, 

experimental conditions that are not part of the same experiment 

may still be compared to one another, if desirable. While there 

may be few immediate benefits of this comparison, the super 

experiment is a unique characteristic of internet-scale research. 

Therefore, the use of the term “super experiment” in the super 

experiment framework simply refers to the broad network of 

information flow between different scales of experimentation, 

from the lab scale, to the school scale and to the internet scale. 

Type Benefits Drawbacks 

Lab Scale 

(1-75) 

Rich user data, Formal, 

Controlled CTA, Talk 

alouds, Psycho-

physiological studies 

Effect Size, Replication, 

Scalability, 

Experimenter effects, 

Threats to external 

validity  

School 

Scale  

(25-

10,000) 

Formal, Controlled, 

Validation, Good 

randomization, Surveys, 

Enforced participation 

Expensive, Difficult to 

replicate, Threats to 

external validity 

 

Internet 

Scale 

(10,000-

millions) 

Informal, Large data 

collection, Rapid, High 

external validity, 

Decreased Type II error 

rate, High power 

Anonymity, High 

attrition, Data overload, 

Threats to internal 

validity 

Table 1. Components of the Super Experiment Framework 

3. IMPLEMENTATION EXAMPLE 
The need for the SEF framework was initiated through our work 

in creating online games for learning. The number of potential 

experiments was large and the opportunity to field the games at 

each of the scales identified in the SEF framework provided the 

need to build a feedback loop to execute many experiments at 

internet scale in order to narrow down the potential experiments to 

test at the more controlled school scale. “Battleship Numberline” 

(BSNL), an online educational game, benefits from the super 

experiment framework.  

Designed to improve number sense among elementary and middle 

school students, BSNL provides practice estimating numbers on a 

number line within four content domains: whole numbers, 

fractions, decimals and measurement [4]. The game narrative 

involves defending Numbaland Island from invading robot pirates 

by firing projectiles at their ships and submarines. BSNL involves 

two basic modes: naming numbers and placing numbers. In the 

naming condition, players type a number that corresponds to the 

location of an enemy ship that is positioned on a number line 

between two marked endpoints. In the placement mode, the player 

is given the numeric location of a hidden submarine (e.g., 

“Submarine spotted at 1/3”) and needs to click on the location that 

they believe corresponds to the number. After the player has typed 

a number or clicked on the number line, a projectile drops 

vertically from the top of the screen to the designated location on 

the number line. Animation and text-based feedback 

communicates the player’s accuracy after every round.  

A primary goal of our research has been to understand how 

different game design factors affect player learning and 

engagement. In order to systematically investigate these factors, 

we implement these design factors as flexible xml-based 

parameters that can be determined at the game runtime. We are 



 

 

then able to create online experiments that randomly assign new 

players to a set of different game sequences.  

During gameplay, BSNL generates an online data log of the task 

context (the above xml parameters) along with data describing the 

player’s performance on each opportunity. On each item, we log 

the player’s reaction time, their accuracy, and a binary field 

indicating whether the player was successful or not. Logs are then 

imported into the PSLC Datashop [2], which allows for the 

secondary analysis of player performance and learning. The hit 

rate measure is essential for enabling Datashop to plot learning 

curves of error rate over time. By labeling different items in the 

game with different knowledge components (e.g., reducible 

fractions, unit fractions, etc), we can plot learning curves for each 

knowledge component. Learning curves can also be described 

based on fluency [1], where we plot the reduction of reaction time 

over opportunities played. In addition to these measures of 

learning and performance, we investigate player engagement 

through two measures: the total number of items played and the 

total amount of time spent playing. These two metrics correspond 

with our construct of intrinsic motivation or player engagement.  

The number of potential parameter settings in BSNL makes it a 

great tool to answer many research questions, but at the same time 

the number of possible settings make it difficult to decide on what 

settings to in traditional lab or school settings. For this reason, it is 

a perfect candidate for use in the SEF. Next, we show how the 

results of different types of experiments at one scale inform new 

experiments on a different scale. 

Lab Scale informing School Scale. The use of a lab experiment to 

inform a field trial at a school is one of the most common types of 

experimental design. It is still an important part of the SEF. We 

performed a lab scale experiment, which is now being validated at 

the school scale. This experiment was conducted at a small 

Catholic liberal arts University. Although the college is co-

educational, its focus is on women’s education, and 89% of the 

participants were women. Participants were 18 students in an 

eight-week first-year seminar course, which met once per week. 

Students chose for this seminar period to focus on mathematics 

games. Over 5 weeks, we administered a short (typically one 

minute) paper-and-pencil pretest, asked students to play a specific 

fluency game for approximately one-half hour and then gave a 

posttest which was identical in content to the pretest. In all but the 

first week, the pretest was preceded by a delayed post-test, which 

was a repeat of the posttest from the previous week’s materials.  

In four of the five experiments significant improvement was 

shown on a delayed post-test, and three of the five showed 

immediate results. Effect sizes were also quite large, ranging from 

0.4 to 2.4, indicating that these results are not only significant but 

substantial. Prior to the first experiment, students were given a 

survey about their confidence in mathematics (containing 

questions like “I am sure that I can learn math.”) and about text 

anxiety (containing questions like “I am so nervous during a test 

that I cannot remember facts that I have learned”). The two scales 

were mixed in a 16-item form. Students were asked to rate each 

statement from 1 (“strongly disagree”) to 5 (“strongly agree”). 

Student confidence increased significantly, t(14)=-3.2, p<.01, 

d=0.4, but there was no change in test anxiety, t(14)=-3.1, n.s. 

Due to the success of this lab scale experiment, a similar school 

scale experiment is now being conducted in multiple college 

classrooms over an entire semester. Unlike the lab scale, the 

researchers are not present in these classrooms, but we expect to 

see similar results. 

School Scale informing Internet Scale. BSNL was designed based 

on an existing body of literature that investigated number line 

estimation in the laboratory [6]. The game was playtested with 8 

elementary school students, to refine usability issues in the design. 

Following this, a school scale study was conducted with 119 

students in grades 4-6. Students showed significant improvement 

in hit rate form the first to second opportunity (see Figure 2), and 

students demonstrated significant improvements in the estimation 

of fractions on a number line after 20 minutes of gameplay. 

Moreover, 82% of players (74% females, 92% males) reported 

that they wanted to play the game again [4]. The data from these 

classroom studies was imported into the PSLC Datashop to test 

various knowledge component (KC) models. We identified a KC 

model based on the various regions of the number line. This 

knowledge component model was then used to produce a 

Bayesian Knowledge Tracing adaptive sequencing algorithm. 

This algorithm was then tested online in comparison with a 

randomly sequenced level. Preliminary results suggest that the 

BKT adaptive sequence did not result in significantly greater 

player engagement than the random sequence. 

 

Figure 2. Illustrates the average improvement from the first 

opportunity to the second opportunity, by item presented. The 

clear patterns of difficulty are used to generate knowledge 

component models in Datashop. 

Internet Scale informing School Scale or Lab Scale. Internet-scale 

experiments can be useful for documenting the difficulty of 

different task configurations. This is useful in the field of EDM, 

as it allows for the generation of knowledge component models. 

Different tasks are said to require different knowledge 

components if and only if the tasks result in different performance 

rates or learning curves.  Therefore, by assessing the difficulty of 

instances over a broad task design space, we can understand how 

the task design space maps to various KC models. 

For example, Rittle-Johnson, Siegler and Alibali found that 

tickmarks supported the estimation of decimals on a number line 

[6]. In order to replicate this work and extend it, we randomly 

assigned online players to 6 different conditions in both the 

decimal and whole number domain. Players either encountered 

tickmarks dividing the number line into tenths, fourths, thirds, 

halves (midpoint), or no tickmarks at all. Finally, an additional 

two conditions looked at the interaction of an adaptive sequencing 

algorithm with tickmarks at the midpoint. An overview of the 

experiments and conditions can be seen in Table 2. Over 80,000 

internet users participated in the experiment.  

An experiment with this many conditions would be difficult to 

replicate in a lab or classroom. This broad investigation of the 

effects of guides enabled us to observe two unusual outcomes. 

First, there was an apparent interaction effect between our 

adaptive sequencing condition (termed “ITS”) and the midpoint 



 

 

guides. Neither Second, the 10th guides apparently increased 

player engagement in the decimal condition, but decreased 

engagement in the whole number condition. These insights have 

led us to execute similar lab scale experiments to replicate and 

better understand these specific results. 

Experiment Name Conditions Players 

Adaptive Sequencing 15 19,856 

Difficulty Sequencing 6 6,302 

Difficulty Comparison 6 6,234 

Expanded fraction set 4 5,596 

Guides Engagement  10 11,386 

Guides Learning  20 22,441 

Measurement Study 3 10,014 

Total  64 81,829 

Table 2. List of experiments running concurrently with a total 

of 64 conditions. 

4. CONCLUSIONS AND FUTURE WORK 
Technology is forever changing the way we conduct experiments. 

The traditional paradigm is no longer the best way to do things. 

Data is coming in faster, larger, and more fine grained. Instead of 

focusing eScience efforts in just analyzing we have created a 

framework to exploit internet scale experiments, while still 

creating valid findings in real classrooms. 

The main contribution of this work is the development of the 

Super Experiment Framework which incorporates a feedback loop 

allowing for experiments of different scales to inform each other. 

This has become possible, and even necessary, with the use of the 

internet to collect a large amount of experimental data. Internet 

scale allows for optimization experiments that would be too 

expensive to do at field level. This is truly applied educational 

research that, as we have shown, provides insights that can inform 

more controlled lab or school scale experiments. We also 

explained our initial implementation of the SEF with a large 

project with broad scope and many interesting research questions. 

Traditional "one-way street" experiments of lab to school are slow 

to findings and outdated. Our work shows how utilizing all three 

scales of experiments leads to rapid findings that can lead to real 

implementable insights efficiently. 

Making the framework possible is the accessibility of internet 

scale experiments. The key barrier to internet scale educational 

research is attracting large numbers of users. Research projects 

rarely invest in high-quality software design and usability, which 

is usually necessary to achieve widespread adoption. However, 

once this quality is developed, large numbers of users can be 

reached through collaborations with one of many internet portals 

that seek to aggregate educational content (e.g., Brainpop.com). 

Another challenge is instrumenting software for generating data 

logs that measure player performance, learning and engagement. 

Log files should capture not only correctness information, but the 

amount of time that players spend on an activity, as well as the 

number of opportunities attempted to make these measures.  

A third challenge is the configuration of the software to allow for 

experimental designs. This involves the abstraction of design 

variables in the software’s design space, such that different 

instances of the software can be created quickly. For instance, we 

use xml to define game levels at run-time. These configurations 

can then serve as different experimental conditions that can be 

randomly deployed to online users.  

Finally, one unusual new challenge in internet scale research is 

the efficiency of subject-pool utilization. While lab or school scale 

researchers expend significant effort to recruit a sufficient number 

of subjects in order to achieve statistical significance, internet 

scale researchers increasingly face the challenge of making use of 

tens of thousands of subjects in an efficient manner. Certain types 

of experimentation may result in inconsistent user experiences 

that reduce overall participation.  

Some challenges will be particular to individual experiments. For 

instance, in our online experiments we observe strong seasonal 

effects of weekends and school holidays, where the number of 

players is greatly reduced. This suggests that certain experimental 

comparisons should be sensitive to the time period of the study, 

not merely the number of subjects.  

Many of these challenges can be mitigated by validating the 

results of internet scale experiments with controlled classroom 

experiments. As shown in the experiment section, we are 

continuing to run a number of experiments of scales based on 

findings of different scales. This feedback loop will continue in 

the future as we strive to optimize the games to maximize 

learning. We believe this framework will rapidly lead to 

significant discoveries that are replicable at each of the scales. 
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