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Abstract. In this research, we explore how expertise is shown in both humans 

and AI agents. Human experts follow sets of strategies to complete domain spe-

cific tasks while AI agents follow a policy. We compare machine generated pol-

icies to human strategies in two game domains, using these examples we show 

how human strategies can be seen in agents. We believe this work can help lead 

to a better understanding of human strategies and expertise, while also leading 

to improved human-centered machine learning approaches. Finally, we hypoth-

esize how a continuous improvement system of humans teaching agents who 

then teach humans could be created in future intelligent tutoring systems. 
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1 Introduction 

In this research, we explore how AI agent policies might be used to teach humans. In 

complex tasks humans generate strategies which can be applied in many different 

situations. Combinations of strategies that lead to optimal outcomes can lead to exper-

tise in a domain, although there is still no consensus among researchers as to what 

makes a person an expert and how expertise is defined. We explore the interactions of 

policies and strategies, looking at how both relate to expertise. Our long term goal is 

to see how humans can help teach agents and agents can help teach humans in a con-

tinuous loop. A start to this goal is a comparison of agent policies, generated with 

different techniques on several complex game domains, with strategies generated 

from human players. 

2 Background and Domains 

Expertise has been the subject at the crossroads of Psychology and Computer Science 

for some time. The Nature of Expertise [14] explored a wide variety of domains from 

human typing to sports to ill-defined domains. A key insight from this work is that in 

the early development of AI systems, expertise was tightly related to the concept of 
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encoding human strategies into machines, such as early work involving chess players 

and intelligent tutors [4]. As work continued, the Psychology field moved into archi-

tectures of cognition defined by ACT-R [1] and Soar [18] as examples. Computer 

Science moved towards agents and policy creation focusing early on reinforcement 

learning [29] and now advanced techniques built on deep learning [19]. 

 The question of what exactly defines someone as an expert is still an open question 

and has a lot to do with the particular domain that is being studied. In chess, Chase 

and Simon posited that it takes 10,000 hours of study to become an expert [4]. That 

number has also been suggested as the rough number of hours to become an expert 

musician [11] and is a general theory of expertise [10], although largely due to Si-

mon’s chess work. In the case of learning systems, we often define mastery using 

some form of knowledge tracing. These systems often set “mastery” as a probabilistic 

value that a learner knows a particular skill. The value of mastery varies on skills and 

domains, but a value of 90% or 95% are assumed to have achieved mastery [8]. Un-

derstanding skills that are used to solve problems has also been explored in many 

domains [16, 25]. Tasks to elicit knowledge from experts, such as cognitive task anal-

ysis (CTA) have been used by cognitive scientists to better understand the strategies 

that experts use, but may not explicitly recognize [6].  

 AI has been used now for decades to create agents that mimic human behavior. 

These agents are generally driven by a policy created by some form of machine learn-

ing, such as Q-learning [29]. The policy tells the AI agent what to do given a certain 

set of conditions. This is most often defined as a state-action graph that suggests the 

best possible next action for an agent assigned to a given state. In education, agents 

driven by policies have long been a foundational part of intelligent tutors and adaptive 

learning. Work has been done in modeling learning as a policy generated to predict 

what a student knows and what the next best instructional lesson is for a particular 

student [24]. Other research has been done using reinforcement learning (RL) with a 

focus on what pedagogical action would be best to use for a student when multiple 

actions are available [5]. Most closely associated with the research we are doing is 

work on the automatic generation of hints and feedback [23, 27]. This work uses state 

graphs and RL to identify the best path for solving problems. Then generates a just in 

time hint or provides feedback that can lead the student down a better path for learn-

ing.  
We focus on two complex game domains: connect four (C4) and Space Invaders 

(SI). Both are well known games and chosen because of their simplicity of play and 

known human strategies for winning. They also have multiple agent implementations 

that we can exploit, which are explained in detail below. 

The objective of C4 is to align four game pieces of the same color in a row, either 

diagonally, horizontally, or vertically. There are three possible states for each of the 

forty-two available game spaces. The board spaces can be occupied by the turn play-

ers piece, the opponent's piece, or it can be empty. This means there are 342 (≥ 1020) 

moves possible on the game board of seven columns by six rows, ranging from zero 

to forty-two pieces on it. Using binary decision diagrams, it has been shown there are 

exactly 4,531,985,219,092 legal board configurations [9]. Additionally, C4 is a solved 

zero-sum game, of moderate complexity, where the outcome of the game can correct-

ly be predicted from any state [31]. There are many variants of C4 agents [12, 13]. 
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Recent agents that solve the game using temporal difference learning, achieved a win 

percentage close to perfect, but require several millions of self-play games for train-

ing, thus being far off human performance [2]. Another study found that using 

1,565,000 games for training data, their agent could reach an 80% success rate, but it 

required between 2-4 million games to produce what would be considered a strong-

playing one [30]. The most successful agents of C4 make use of the MiniMax algo-

rithm, which consists of heuristic evaluation function that is akin to these human 

strategies. It is often cited as the standard to compare different agent implementations 

against, as MiniMax can win virtually every time, depending on its search depth, with 

no training data required [30]. This is powerful since C4 is a zero sum game, and the 

heuristic function has the agent follow a set of optimal human-like strategies. The 

evaluation function can be summarized by five strategy points: (1) If there is a win-

ning move, take it (2) If the opponent has a winning move, prevent it (3) Take the 

center square over edges and corners (4) Take corner squares over edges (5) Take 

edges if nothing else is available. 

Just implementing a simple human strategy can have a profound effect on the size 

of the agents search space and number of game plays needed to generate an expert 

agent. For example, one basic strategy is when given the opportunity to go first, a 

player should always take the center position on the board, and if going second the 

player should take this position if available. From a simple computation we can see 

that this prunes 6 of the 7 high level branches in the initial graph leading to tremen-

dously less possible game states in the expert player. 

Space Invaders was a classic arcade game and one of the games available in the 

Atari Grand Challenge dataset (AGC) [17] based on the classic Atari 2600 home con-

sole game system. In dataset-1 of the AGC, there are 445 human game plays of SI. SI 

also represents a potentially easier game to follow in the Atari game space because 

the game dynamics remove some of the available moves. While Atari games allow for 

the use of four directional movements (left, right, up, down) plus a button, SI only 

allows the player to move left or right and use the button to shoot. This limits the 

complexity of this game compared to some others. 

There are a number of human strategies that we have discovered from discussions 

with an expert of the game. This expert was able to achieve scores greater than 98% 

of all human players as reported by the Atari Grand Challenge site. The human strate-

gies include (1) because only one shot can be on the screen at a time shooting lower 

invaders leads to faster shooting, (2) shooting entire columns from the left side first 

give additional time because of the right to left movement of the invaders, and (3) 

when the invaders reach the left side and begin moving right shoot the bottom row 

and move to shooting the rightmost column. These strategies keep the invaders large-

ly in a square formation. It is disadvantageous to split the invaders into two squares, 

because that requires additional movement to get a shot off. 

Using the Arcade Learning Environment (ALE) [3], agents have been created and 

trained to play Space Invaders. A summary of the scores of three agent based on dif-

ferent algorithms in a replication study of a number of previously built agents in the 

ALE framework [21] claimed agents did exceed human capabilities at times, although 

they did not average a score that was higher than the top 5% of human players pre-
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sented in the AGC dataset. When we looked at data from the DQN agent, which was 

driven by a deep learning algorithm, visualizing the RAM states based on a t-SNE 

embedding [22] shows that many of the clusters do show evidence of human strate-

gies, such as keeping the invaders in a single square formation. Watching replays of 

expert agent players also shows expert human strategies, but more work is needed to 

delve into the actual policy to find clear evidence of a particular strategy. 

3 Discussion and Conclusions 

Heuristic driven policies, by means of a given evaluation function, are widely used to 

solve games such as chess, C4, Othello and Go [7]. The evaluation functions in these 

agents use information about the game. Much of this is directly related to a strategy 

that a human player would follow, as addressed previously with C4. These strategies 

represent expertise in a human player and are clearly identifiable in agent play. In the 

development of agents, it is the human encoding the strategy into the AI using their 

knowledge of the game. The majority of game-playing agents, however, make use of 

deep neural nets to develop their policies, which makes them black-box and often 

difficult to interpret by a human. Recent work has looked at making policies devel-

oped this way programmatically interpretable, but much works remains for humans to 

be able to clearly articulate what many of these agents have learned from their train-

ing [32]. 

 It is debatable if these deep reinforcement learning agents make use of explicit 

strategies as they execute their given policies. A recent approach uses saliency maps 

to highlight key decision regions for agents playing Atari 2600 games, and found that 

their SI agent learned a sophisticated aiming strategy [15]. Another way to make poli-

cies less black-box, is to break the policy down into smaller subtasks that are com-

prised of a few actions that feed back into the overall policy [20]. These techniques of 

breaking down policies into smaller interpretable strategies and visually representing 

the mechanisms of an agent’s policy are steps toward having humans learn strategies 

from agents, without directly encoding any into the agent itself.    

Some previous work looks to use human seeding of policies in educational do-

mains [26]. Another such study found that training on human data; they could achieve 

comparable scores to state-of-the-art reinforcement learning techniques and even beat 

the scores using just the top 50% of their collected data for more complicated games 

[17]. Combining a method that not only trains agents on expert human data, but also 

encodes their strategies into a form of an evaluation function has the potential to yield 

successful agents that require less computational time, while performing at greater 

levels than comparable agents.  

We can identify human strategies in the policies generated by agent through post 

hoc human inspection. In the future, we will explore how to automate the process of 

identifying strategies within the agent policies similar to previous work on less com-

plex educational domains [28]. This will require progress on explainable AI to extract 

human readable information from increasingly black-box policies. We plan to explore 

a number of additional domains where data and agents are available for study. 
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