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Abstract. When students are given agency in playing and learning from a 
digital learning game, how do their decisions about sequence of gameplay 
impact learning and enjoyment? We explored this question in the context of 
Decimal Point, a math learning game that teaches decimals to middle-school 
students. Our analysis is based on students in a high-agency condition, those 
who can choose the order of gameplay, as well as when to stop. By clustering 
student mini-game sequences by edit distance -- the number of edit operations 
to turn one sequence into another -- we found that, among students who stopped 
early, those who deviated more from a canonical game sequence reported 
higher enjoyment than those who did not.  However, there were no differences 
in learning gains. Our results suggest that students who can self-regulate and 
exercise agency will enjoy the game, but the type and number of choices may 
also have an impact on enjoyment factors. At the same time, more investigation 
into the amount and means of delivering instruction to maximize learning 
efficiency within the game is necessary. We conclude by discussing digital 
learning game design lessons to create a game that more closely aligns with 
students' learning needs and affective states. 
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1 Introduction 

An important aspect of digital learning game design is deciding which gameplay 
elements the players (i.e., students) can control. In a typical game environment, players 
are offered a lot of agency - the capability to make their own decisions about how, what, 
and when they play. However, agency, which is often associated with engagement and 
enjoyment [41], may or may not be helpful to learning. Another nuance present in 
digital learning games is whether students should be given instructionally relevant 
choices, since young learners often have difficulty in making effective instructional 
decisions [33], in many cases resorting to unthoughtful choices [44]. 

One way to enhance students’ experience and outcomes, while still giving them 
control over instructionally relevant aspects of gameplay, is to provide a 
recommendation feature within the game that can suggest the (potentially) optimal next 
step, without reducing the students' sense of agency. To achieve this, an important step 
is examining the influences of different problem sequences and identifying those that 
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are most beneficial in terms of learning, enjoyment, or ideally both. We examined this 
question in Decimal Point, a digital learning game composed of a variety of mini-games 
designed to help middle-school students learn decimals [30]. While the original version 
of the game features a canonical sequence of mini-games that aims at interleaving 
various problem types and visual themes, it is not designed to be optimal for both 
learning and enjoyment for all students. To build a recommender capability as outlined 
above, we would need to identify the features of a good sequence while, at the same 
time, noting that these features may vary based on individual students. 

To tackle this issue, prior studies of Decimal Point have compared learning and 
enjoyment between a high- and low-agency condition [23, 34]. The high-agency group 
could play the mini-games in any order and also had the option to stop playing early or 
play extra games. In contrast, the low-agency group had to play all mini-games in a 
fixed order. Expanding on this work, we focused solely on the high-agency students 
and explored potential differences among them in our analysis. In other words, given 
that high-agency students can make their own choices about mini-game selection, how 
would different selection orders (i.e., game sequences) impact their experience? More 
specifically, we investigated the following research questions: 

RQ1: How do students’ game sequences impact their self-reported enjoyment of the 
digital learning game? 

RQ2: How do students’ game sequences impact their learning outcomes from the 
digital learning game? 

2 Background 

2.1 The Decimal Point Game 

Decimal Point is a single-player game that helps middle-school students learn about 
decimal numbers and their operations (e.g., adding, ordering, comparing). The game is 
based on an amusement park metaphor (Figure 1), where students travel to different 
areas of the park, each with a theme (e.g., Haunted House, Sports World), and play a 
variety of mini-games, each targeting a common decimal misconception [19, 25, 52]. 

In the original game [30], students were prompted to play the mini-games in a pre-
defined, canonical sequence, according to the dashed line shown in Figure 1A (starting 
from the upper left). This sequence was originally developed to maintain thematic 
cohesion and to interleave problem types, which has been shown to improve 
mathematics learning [37, 38]. However, it is unclear whether a different sequence 
could be more or less beneficial to students. A subsequent study by [34] further 
explored agency by comparing two versions of Decimal Point: high-agency and low-
agency. In the high-agency condition, students could play the mini-games in any order, 
could stop halfway through (i.e., after 12 mini-games) or play extra rounds after 
finishing all 24 mini-games. In the low-agency condition, students played all mini-
games in a fixed order, without the option to stop early or play more. 
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1A 1B 
Fig. 1. The different game maps used in (A) low-agency and high-agency with line, and (B) high-
agency without line. The filled circles denote completed mini-games. 
 

The authors reported no differences in learning or enjoyment between the two 
conditions, and had two conjectures regarding the high-agency students. First, they may 
have been implicitly guided to follow the canonical sequence by the dashed line on the 
map (Figure 1A), hence their experience was comparable to that of students in the low-
agency condition. Second, high-agency students may not have felt that their specific 
mini-game choices were consequential, as they would either stop early or eventually 
end up having played all mini-games, same as the low-agency students. In other words, 
to these students, different game sequences may have seemed to result in the same 
outcome. 

The first conjecture was confirmed by post-hoc analyses reported in [34] and in a 
follow-up study by [23]. [34] reported that 68% of high-agency students played only 
24 mini-games, similar to those in the low-agency condition, in approximately the same 
order. The study in [23] introduced a new high-agency condition without the dashed 
line (Figure 1B) and it was observed that students in this condition deviated from the 
canonical path significantly more than those in the original high-agency condition.  

As the next step, in this paper, we investigate the second conjecture -- whether 
different game sequences selected by students in the high-agency conditions (with and 
without the dashed line) can have an impact on learning and enjoyment. 
 
2.2 Related Work 

The high-agency version of Decimal Point has many characteristics of an 
exploratory learning environment (ELE) [1], where students are free to explore 
instructional materials rather than follow a predefined learning path. Other notable 
digital learning games of this type include Physics Playground [49], iSTART-2 [50], 
Quest Atlantis [5] and Crystal Island [43]. Among these, Crystal Island has been the 
subject of an experimental manipulation similar to that of Decimal Point, with three 
agency conditions: (1) high-agency, where students could freely explore the game 
world and choose which activities to do and in what order, (2) low-agency, where 
students did the same activities but had to follow a fixed order, and (3) no-agency, 
where students only observed a video of an expert playing the game. Study results from 
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[43] showed that low-agency students demonstrated the greatest learning gains but also 
exhibited undesirable behaviors such as a propensity for guessing, suggesting that some 
degree of agency may be beneficial, but too much is not. 

An important task in ELEs is modeling students’ learning to provide effective 
interventions based on fine-grained interactions with the learning environment [1]. A 
useful metric that can be derived from these sequential data is the distance - a measure 
of how similar two sequences are. Prior research has shown that in digital learning 
games, the distances from students’ problem-solving sequences to an expert solution 
sequence are correlated with their learning gains [42] and test performance [20]. It is 
also possible to compute the distances among students’ own sequences to cluster them. 
Analysis of the resulting clusters has been instrumental in several ELE assessment 
tasks: identifying player strategies in an algorithmic puzzle-based game [24], 
distinguishing between low and high achieving students in a problem-solving tabletop 
application [29], exploring the solution space in an open-ended physics game [22], and 
so on. 

Another focus of the current work is student enjoyment and how it may be influenced 
by gameplay choices. In general, digital learning games are effective at promoting 
engagement and enjoyment by giving students control over the learning environment 
[45, 50, 51]. However, the effect of student choices is also subject to several nuances. 
First, it can vary based on individual students’ self-regulation skills [32]. Second, 
students need to feel that their choices are meaningful and acquire a sense of agency 
(for a detailed discussion of agency within Decimal Point, refer to [23] and [34]). Third, 
the type and number of choices may affect their utility. In particular, choices that reflect 
personal interest will have the greatest effect, yet a large number of choices can become 
discouraging [36]. We will elaborate on these nuances in our later discussion. 

3 Context 

The work reported in this paper is a post-hoc analysis of data collected from two prior 
studies of Decimal Point [23, 34]. We briefly introduce the way these studies were 
conducted here before describing our analysis approach. 

The two prior studies involved a total of 484 students. In this work, we focused on 
only 287 of those students in two conditions, high-agency with line (HAL) and high-
agency without line (HANL), since these were the groups of students who could make 
their own mini-game selections, as opposed to those in the low-agency condition who 
could not make such choices. We further removed students who did not finish all of the 
pre- and posttest materials and evaluation surveys, which are used to measure learning 
and enjoyment outcomes, reducing the sample to 235 students (110 male, 125 female). 
The digital learning game and study materials included the following: 

Pretest, Immediate Posttest and Delayed Posttest. The pretest, immediate posttest 
and delayed posttest (one week after the posttest), were administered online. The tests 
are isomorphic to one another (i.e., the same types of problems in the same order) and 
contain decimal items similar to those found in the game (e.g., ordering, comparing, 
and adding decimals). The tests were also counterbalanced across students (e.g., ABC, 
ACB, BAC, etc. for pre, post, and delayed). Learning gains from pretest to posttest and 
pretest to delayed posttest are used to measure learning outcome. 
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Intervention. Students playing the high-agency versions of the game were shown a 
game map depicted in Figure 1A (for the HAL group) or 1B (for the HANL group), 
where they could make their mini-game selections. There is also a dashboard that 
provides information about the types of game activity, and shows current mini-game 
completion progress. After playing half of the mini-games, students would be notified 
that they could choose to stop playing at any time from this point. Once students 
finished all 24 mini-games, the map interface would be reset to allow each game to be 
played once more (with the same game mechanics but different question content). 
Hence, the number of mini-games played by each student ranges from 12 to 48. 

Evaluation Questionnaire and Survey. After finishing the game, students were 
given an evaluation questionnaire and post-survey, which asked them to (1) rate their 
overall experiences using a 5-point Likert scale, with a variety of game enjoyment 
questions (e.g., “I liked doing this lesson”), (2) select their most favorite mini-game, 
and (3) reflect on their agency experience (e.g., “if you did this activity again, would 
you play fewer, the same, or more number of mini-games? Why?”). The scores from 
(1) are averaged to produce a measure of self-reported enjoyment. 

4 Results 

4.1 Game sequence clustering 

Since there is no expert sequence in Decimal Point (as we previously mentioned, it is 
unclear if the canonical sequence is optimal), we did not measure deviation from expert 
solution like other studies [20, 42]. Instead, our goal was to look at trends in learning 
and enjoyment among students who played through the mini-games in a similar way. 
We took a clustering approach to create groups of students who played a similar 
sequence of mini-games and looked for differences between these groups. To be 
consistent with prior studies, and because it was shown to be useful for analyzing our 
type of sequential data [23, 34], we used the Damerau-Levenshtein edit distance [13] 
as a measure of similarity between sequences. This metric counts the minimal 
operations required to change one sequence to another using insertions, deletions, 
substitutions, and transpositions. The smaller the edit distance, the more similar two 
sequences are to one another. If the value is zero, the two sequences are identical; if the 
value is the sum of the two sequence lengths, they are completely distinct. 

We then applied k-medoids clustering [6] with the pairwise edit distance matrix of 
all game sequences as input. In this way, students who played similar game sequences 
(i.e., have a smaller edit distance between one another) would be grouped within the 
same cluster. We experimented with different values of k (number of clusters) for k-
medoids clustering. After searching from 2 to 20, we selected the optimal k value of 4, 
based on the best average Silhouette Coefficient [40]. The four cluster medoids are 
illustrated in Figure 2. We named each cluster based on the key mnemonic features of 
its medoid. The first is Canonical Sequence (CS) with a medoid sequence identical to 
the canonical, following the dashed line in Figure 1A. The second is Initial Exploration 
(IE) because students played a few mini-games out of order at the beginning of 
gameplay before returning to the canonical sequence. The third and fourth are Half on 
Top (HT) and Half on Left (HL) respectively because their medoids only span a portion 



6 

of the game map (the top half and left half, respectively). Descriptive statistics for all 
clusters are included in Table 1. 

 
Fig. 2. Visualizations for the medoid game sequences in four clusters. Here the maps are shown 
without the line for clarity. 

Table 1. Descriptive statistics for the four clusters. 

Cluster # of 
Students 

# of Mini-
games 

Pretest Immediate 
Posttest 

Delayed 
Posttest 

Enjoyment 

CS 89 24.9 (4.6) 36.8 (13.1) 42.4 (10.3) 44.3 (10.1) 3.7 (0.8) 
IE 14 26.9 (9.2) 37.3 (11.1) 42.4 (8.6) 42.9 (9.2) 3.8 (0.6) 
HT 100 17.2 (6.3) 33.9 (12.9) 39.7 (11.7) 40.8 (12.3) 3.4 (1.0) 
HL 32 19.6 (6.0) 40.0 (9.8) 43.3 (10.6) 44.3 (10.5) 3.8 (0.8) 

 
To identify differences in learning and enjoyment across clusters, we conducted the 
Kruskal-Wallis test [14]. Kruskal-Wallis was chosen because our data did not satisfy 
the normality assumptions of an ANOVA. In the case of a significant difference, we 
used Dunn’s post hoc [17] to perform pairwise comparisons between clusters. The 
effect size was also considered, following the thresholds of Cliff’s Delta [39]. In this 
way, we examined our two research questions: 
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RQ1: How do students’ game sequences impact their self-reported enjoyment of the 
digital learning game? Kruskal-Wallis test revealed a significant difference across the 
four clusters (H = 10.248, p = 0.017). Using Dunn’s post hoc test with a Benjamini-
Hochberg correction [8], we observed that Cluster HL had significantly higher 
enjoyment scores than HT, with a small effect size (Cliff’s d = 0.310, p = 0.007), as 
shown in Table 2. 

RQ2: How do students’ game sequences impact their learning outcomes from the 
digital learning game? Kruskal-Wallis test showed no significant difference across 
clusters in gaining scores from pretest to immediate posttest (H = 3.086, p = 0.378) and 
from pretest to delayed posttest (H = 2.585, p = 0.414). Thus, clusters do not have a 
significant effect on students’ learning outcomes.  
 

Table 2. Multiple comparisons for enjoyment scores in different level 
(** - significant, p < adjusted 𝞪; ^ - small effect size). 

Pairwise median of enjoyment scores 
for different clusters 

Cliff’s d p-value Adjusted 𝞪 

IE 3.813 HL 3.813 -0.096 0.731 0.042 
IE 3.813 CS 3.750 0.055 0.748 0.050 
IE 3.813 HT 3.500 0.257 0.130 0.025 ^ 
HL 3.813 CS 3.750 0.115 0.326 0.033  
HL 3.813 HT 3.500 0.310 0.007 0.008 **^  
CS 3.750 HT 3.500 0.195 0.018 0.017 ^ 

 
4.2 Post analysis 

Prior studies have established agency as a sense of freedom and control by the student 
[54], and in the context of our digital learning game, the amount of deviation from the 
canonical path [23]. Given that there is a significant difference in enjoyment scores 
between two clusters, we further explored the relationship between game sequence, 
agency, and enjoyment through the following two metrics. 

Theme transition frequency (TTF). We expected that students who exercised 
agency would look at the entire map and explore different theme areas, as opposed to 
selecting a mini-game nearest to their current location or staying within one theme. 
While students could stay within a theme that they liked, we believed they were unlikely 
to enjoy every theme; therefore, we still expected to see more exploration. To measure 
this behavior, we defined a new metric, called theme transition frequency, as the 
number of transitions between consecutive mini-games with different themes divided 
by the total number of transitions, for a given student. A value close to 1 means that the 
student tends to alternate between themes; a value close to 0 means that the student 
sticks to the same theme until all mini-games in that theme are completed. Next, we 
conducted Kruskal-Wallis test and found a significant difference in TTF across the four 
clusters (H = 52.421, p < 0.0005). To compare the TTF between pairs of clusters, we 
applied Dunn’s post hoc test with Benjamini-Hochberg correction [8]. Cluster IE had 
significantly higher TTF than cluster CS, with a large effect size (Cliff’s d = 0.527, p = 
0.004). Cluster HL had significantly higher TTF than cluster CS with a large effect size 
(Cliff’s d = 0.749, p < 0.0005) and higher than cluster HT with a small effect size 



8 

(Cliff’s d = 0.244, p < 0.022). Cluster HT had significantly higher TTF than cluster CS, 
with a medium effect size (Cliff’s d = -0.454, p = 0.017). 
 

Table 3. Multiple Comparisons for TTF in Different Level 
(** - significant, p < adjusted 𝞪; ^ - small effect size,  

^^ - medium effect size, ^^^ - large effect size) 
Pairwise Median of TTF 
for Different clusters 

Cliff’s d p-value Adjusted 𝞪 

IE 0.506 HL 0.675 -0.304 0.149 0.042  
IE 0.506 CS 0.304 0.527 0.004 0.025 **^^^ 
IE 0.506 HT 0.545 -0.041 0.996 0.050  
HL 0.675 CS 0.304 0.749 < 0.0005 0.008 **^^^ 
HL 0.675 HT 0.545 0.244 0.022 0.033 **^ 
CS 0.304 HT 0.545 -0.454 < 0.0005 0.017 **^^ 

 
Mini-game preference. As the only difference in enjoyment we identified was among 
those who stopped early, in the HL and HT clusters, we conjectured that students may 
have had a stronger sense of enjoyment earlier in gameplay than towards the end. 
However, we did not have a mechanism to detect affective states over time. Therefore, 
as a proxy in examining this behavior, for each student, we looked at her self-reported 
favorite mini-game on the post-survey and where it occurred in her game sequence. 
More specifically, each student was labeled as one of three categories: (1) prefer one of 
the first three mini-games played, (2) prefer one of the last three mini-games played, 
and (3) prefer one between the first and last three mini-games. We then tested if the 
favorite mini-game is equally likely to appear in every part of the sequence. Since there 
are 24 mini-games in total, the null hypothesis is that the distribution of the three groups 
is 12.5%, 12.5% and 75% of the number of students respectively. We conducted a Chi-
Square goodness of fit test [15] and found that this hypothesized distribution differs 
significantly from the empirical distribution of 30.2%, 59.6%, and 10.2% respectively 
(𝜒2= 67.42, df = 3, p < 0.0005). In particular, the first category, despite covering only 
the first three mini-games, accounted for almost one-third of the most favorite mini-
game responses, much higher than its expected portion of 12.5%. This result implies 
that students tended to prefer their initial gameplay experience. 

5 Discussion 

In this work we explored the question of whether different game sequences lead to 
different learning and/or enjoyment outcomes for students in the high-agency condition 
who could decide on their mini-game selections. Across the four identified clusters of 
game sequences -- CS, IE, HT, HL -- we found no differences in learning, but Cluster 
HL had significantly higher enjoyment scores than Cluster HT. We discuss this key 
result, as well as our other results, in the following paragraphs. 

With respect to learning, we saw that the varied numbers of mini-games played by 
students across the clusters did not result in learning differences. This outcome is 
consistent with [23], and the authors’ proposed explanations are also applicable in our 
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case. Students who stopped early may have been able to self-regulate their learning and 
learned as much as those who played all mini-games, resulting in more efficient 
learning [31]. Alternatively, it is possible that there is more instructional content than 
required for mastery in the game, so students who played all of the mini-games 
essentially over-practiced rather than being less efficient. There have been debates 
about the varying effects of over-practice; some researchers claim that it leads to 
decreased learning efficiency [10, 12], while others suggest it yields higher levels of 
fluency [27] and better long-term outcomes [16]. In our case, it appears that over-
practice, if present, had a neutral effect, since students who potentially over-practiced 
achieved the same learning gains as those who did not. A step toward better 
understanding this would be to construct a knowledge component (KC) model of 
students’ in-game learning [21] so that learning efficiency and over-practice can be 
validated through Bayesian knowledge tracing [12] and learning curve analysis [18, 28, 
53]. Such a KC model could also be displayed to students to facilitate awareness of 
progress and self-regulation, in the form of an open learner model [9]. 

With respect to enjoyment, while students in HL and HT both played approximately 
half of the mini-games, the former played the most mini-games out of order, while the 
latter tended to follow the canonical sequence. This distinction, demonstrated by our 
analysis of theme transition frequency, suggests that the HL group exercised more 
agency and enjoyed the game more than HT. On the other hand, we expected that 
students in CS and IE would have more enjoyment than those in HL and HT, because 
the former group also had the option to stop early yet chose to continue playing. 
However, we did not observe this difference. One possible explanation is that students 
in CS and IE did not stop early because they were not good at self-regulating their 
learning, rather than because they were enjoying the game more. This idea is supported 
by the observation from Figure 2 that the game sequences in CS and IE are close to the 
canonical sequence, suggesting that students did not exercise agency in mini-game 
selection. A second explanation is that the novelty of the game environment may wear 
off towards the end, i.e., students may have experienced a “burnout effect” with 
diminished feeling of progression [11], which influenced their rating of overall 
enjoyment. Survey responses of mini-game preference did in fact show that students 
tended to favor the initial mini-games. A potential reason for this phenomenon is the 
nature of choices in Decimal Point. According to [7], engaging in choices or self-
control is effortful and draws on limited resources. Therefore, a large number of choices 
can become overwhelming [26, 46], and making several independent choices in a 
limited time may result in fatigue or ego-depletion [36]. In the high-agency condition, 
students first have to select one of the 24 mini-games, then one of the 23 remaining 
mini-games, and so on. Those who played all mini-games had to make 24 such 
selections within the timeframe of the study, so they may have experienced ego-
depletion, which resulted in reduced enjoyment. Also, towards the end of gameplay, 
students do not have as many options to pick from because the completed mini-games 
are blocked from re-selection; however, this lack of choice may instead lead to 
decreased sense of agency. [36] suggested that there is an optimum number of choices 
that balances between the cognitive load from too many choices and the lack of agency 
from too few. Identifying this number for Decimal Point is left for future work. 

In summary, we derived the following game design lessons from our analyses. First, 
one should aim for just the right amount of instructional content so that students can 
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master the materials yet not incur the potential negative effects of over-practice. It can 
be difficult to initially estimate how much content is sufficient, but educational data 
mining techniques (e.g., learning curve analysis [21, 28]) can help revise and improve 
the materials in subsequent iterations. In addition, like Decimal Point, a game could 
allow students to control how much practice they are given, with proper scaffolding to 
assist them in self-regulating (e.g., an open learner model [9]). Second, when providing 
students with instructionally relevant choices, one should take into account factors such 
as agency, burnout and ego-depletion in designing the type and number of choices [11, 
36]. Third, when collecting data from survey questions, one should note that students 
tend to report on their most recent experience, near the end of gameplay, rather than the 
overall experience. 

Finally, we should point out that in this work, posttest scores and survey responses 
were used to measure the impacts of game sequence clusters. While these metrics are 
consistent with our prior studies [23, 34], it is possible that more fine-grained measures, 
for example those taken after each in-game action or mini-game played, would provide 
a better understanding of the influences of game sequences. In particular, we can use 
moment-by-moment learning models [3] to understand whether immediate or delayed 
learning takes place, and learning curve analysis [12] to track students’ performance 
over time. For enjoyment, we will analyze learner affect by integrating automated affect 
detectors [2, 4, 35] in our data collection and analysis procedures, which can yield more 
reliable results than survey responses alone. This direction is consistent with the view 
of digital learning game researchers that students’ learning and enjoyment should be 
assessed by in-game data rather than external measures [47, 48]. 

6 Conclusion 

Our work investigated the effects of game sequences in Decimal Point. There were no 
differences in learning across sequence clusters, However, among students who chose 
to stop playing early, at around half of the mini-games, those who deviated more from 
the canonical order and switched between theme areas reported higher enjoyment 
scores. These results lead to important questions about the amount of instructional 
content, the nature of choices, and the interplay of various engagement factors in the 
context of digital learning games. We intend to investigate these questions in future 
work to better understand the dynamics of students’ game experience. This, in turn, will 
help us develop better AI techniques to personalize the game for increased enjoyment 
and learning. 
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