
Enhancing LLM-Based Feedback: Insights
from Intelligent Tutoring Systems

and the Learning Sciences

John Stamper1(B) , Ruiwei Xiao1(B) , and Xinying Hou2(B)

1 Carnegie Mellon University, Pittsburgh, PA 15213, USA
{jstamper,ruiweix}@cs.cmu.edu

2 University of Michigan, Ann Arbor, MI 48109, USA
xyhou@umich.edu

Abstract. The field of Artificial Intelligence in Education (AIED)
focuses on the intersection of technology, education, and psychology,
placing a strong emphasis on supporting learners’ needs with compassion
and understanding. The growing prominence of Large Language Models
(LLMs) has led to the development of scalable solutions within educa-
tional settings, including generating different types of feedback in Intelli-
gent Tutoring Systems. However, the approach to utilizing these models
often involves directly formulating prompts to solicit specific informa-
tion, lacking a solid theoretical foundation for prompt construction and
empirical assessments of their impact on learning. This work advocates
careful and caring AIED research by going through previous research on
feedback generation in ITS, with emphasis on the theoretical frameworks
they utilized and the efficacy of the corresponding design in empirical
evaluations, and then suggesting opportunities to apply these evidence-
based principles to the design, experiment, and evaluation phases of
LLM-based feedback generation. The main contributions of this paper
include: an avocation of applying more cautious, theoretically grounded
methods in feedback generation in the era of generative AI; and practi-
cal suggestions on theory and evidence-based feedback design for LLM-
powered ITS.

Keywords: Intelligent Tutoring System (ITS) · Large Language
Models (LLMs) · Generative AI (GenAI) · Hint · Formative Feedback

1 Introduction

While the term Generative AI (GenAI) has become synonymous with LLMs and
exploded with the release of ChatGPT in 2022 [6], it is important to note that
GenAI has been a part of the AIED community for many years. A long line
of work has been seen in areas where LLMs have shown particular usefulness
such as content generation [12], including generating formative feedback [51].
The rush to apply LLMs to these areas to improve AIED certainly represents a
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good opportunity to help in education, but the community should not discount
the decades of work that has been done in these areas before the current interest
in the latest LLMs. In particular, the AIED community has decades of research
on the proper way to implement hints and feedback, and while LLMs seem to be
helpful in different phases of feedback generation, the approaches used should
be carefully designed and evaluated through theories and empirical evidence.

This work sets forth a balanced discourse on the integration of LLMs with
learning science work, focusing on leveraging both previous insights on feedback
design in intelligent tutoring systems (ITSs) and contemporary advancements in
generative AI. It outlines a strategic blueprint for infusing LLM-based feedback
by building on previous contributions around ITSs and the learning sciences,
aiming to refine feedback generation processes and achieve more effective learn-
ing results. This work underscores the significance of adhering to established
educational frameworks and validates the potential of LLMs to improve feed-
back components in educational systems, thus offering a pathway toward more
effective and responsible future educational technologies.

2 The Development of ITS Feedback Generation

In this section, we synthesized existing research on ITS feedback generation
based on how they were generated. Three primary methods were identified for
generating feedback: the expert-created learner model, the data-driven learner
model, and the use of large language models. The first method involves experts
manually inputting models of learners’ potential behaviors or constraints of the
problem. The second one compiles data from learners’ interactions with similar
problems to automatically build a model of learner behavior. The third method
leverages LLMs, focusing on supplying the appropriate context and require-
ments, striving to generate more adaptive feedback with less human labor.

2.1 Feedback Generated from Expert-Generated Learner Model

To generate feedback for students, traditional ITSs heavily rely on experts’ input
on learner modeling, with an emphasis on student problem-solving states. There
are two main lines of learner modeling methods in these intelligent tutors: the
production rules model, which originated from Anderson’s ACT-R theory [5],
and the constraint-based model (CBM), which is based on Ohlsson’s theory
of learning from performance errors [35]. Specifically, for a given problem, a
production rules model uses a set of if-then rules or example solutions [3] gen-
erated by experts to model the knowledge and possible decision-making process
to solve this problem. A CBM is composed of a set of expert-written constraints
that should not be broken by any potential correct solutions. When generating
feedback, the learner’s solution will be compared to the rule-based model or
constraint-based model, and the point the student gets astray from the right
track will be included in the delivered feedback.
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The effectiveness of expert-generated models for both approaches has been
repeatedly proven by evidence from theories and classroom studies. For example,
feedback in CTAT tutors [2] is generated from production rules. Until 2016, there
were 18 CTAT tutors distributed in real educational settings, used by approxi-
mately 44,000 students. One of the CTAT tutors, Andes Physics Tutor [55] with
its immediate feedback, helping students achieve significantly better learning in
five years’ repeated measurements. CBM has also proven to be extremely effec-
tive and efficient on highly structured procedural tasks and open-ended tasks
such as programming. For instance, the feedback generated by CBM in SQL-
Tutor led to significantly higher learning outcomes in 4 studies during 1998–
2000 [32]. The learning curve analysis further grounded the experiment result
with sound psychological foundations aligning with the smooth learning curve
criterion [29].

2.2 Feedback Generated from Data-Driven Learner Model

Regardless of their effectiveness, building expert models can be extremely tax-
ing, making them hard to scale up. Furthermore, these methods have inherent
limitations: experts may overlook common mistakes made by students, and both
strategies often yield less-optimal results in ill-defined domains [14]. Therefore,
researchers have started to seek scalable solutions by applying data-driven meth-
ods to aggregate previous students’ solutions and construct the learner’s model.
The automated feedback generation nature of the learner model positions the
data-driven feedback approach as an initial application of generative AI in cre-
ating feedback.

The earliest work of generative AI on feedback generation can be traced back
to the DIAG system [12]. The system utilized the NLP model to aggregate system
messages in various structures and found the feedback aggregated by functions
led to higher learning gain in the classroom study. Another stream of data-
driven works built on the production rule approach automated the construction
of the learner’s cognitive model during problem-solving. The foundation work
of the data-driven cognitive model, regardless of its non-generative nature, can
be found in 1997 [11], where researchers initially applied Bayesian Networks
to students’ problem-solving data for plan recognition and action prediction.
This approach was further developed by the Hint Factory [52], which employed
Markov decision processes to analyze Logic Proof Intelligent Tutor submission
data [50], generating production rules and comparing student submissions to
these rules to tailor hints. This method of production-rule-based feedback gen-
eration garnered attention across ITS research in more disciplines [13,14,41].
The subsequent classroom studies and learning factor analyses [7] confirmed
this approach’s efficacy and versatility across various domains, demonstrating
its potential with minimal data requirements [46].
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2.3 Feedback Generated from LLMs

Some major shortcomings of the data-driven approach are: 1) it relies on the
quantity and quality of the training data, and 2) the feedback in these systems
is in fixed templates with limited adaptation. The recent prevalence of LLMs
provides opportunities to advance the field of feedback generation by generating
adaptive, human-like feedback without training data. For the feedback genera-
tion pipeline, most LLM-based work takes the student’s current state together
with certain prompts asking for feedback as input, treats the LLMs as a black
box to process the prompt, and directly uses the output as the personalized
feedback.

Indeed, LLMs enhance the scalability of adaptive feedback across various
domains [20,25,31,34,48], and help in bypassing the expert model or cogni-
tive model building process from scratch. However, there remains a significant
amount of work overlooked by many researchers in the pedagogical design of
feedback and the evaluation of its impact on learning. Few works are backed by
learning sciences principles such as learning-by-teaching [48] and self-reflection
[24], while others did not elaborate learning design considerations in their design
rationale. Moreover, most of the evaluations on the LLM-based feedback systems
only reported classroom usage data, and there is a lack of theoretical support
or evidence on learning for these emerging systems. To guide better LLM-based
feedback design and evaluation, in the next section, we highlight theoretical and
empirical evidence from previous ITS and learning sciences work, hence suggest-
ing implications for LLM-based feedback accordingly.

3 Implications for LLM-Based Feedback

Prior research in ITSs has built strong groundwork for LLM-based feedback
generation. For instance, the left figure in Fig. 1 illustrates the key functions
of a traditional intelligent tutoring system, showing how feedback is triggered,
generated, and delivered in an ITS [21]. However, methods proven effective
in traditional ITS have not yet been fully leveraged in LLM-based feedback
research. Additionally, technological advancements in GenAI now enable scaling
approaches previously limited by technological constraints.

This section discusses recommendations grounded in prior ITS research and
new scalable opportunities from GenAI advancements in the feedback design,
generation, delivery, and evaluation phases. The right figure in Fig. 1 shows how
new opportunities in LLM and GenAI could fit into and extend the traditional
key functions in ITS (the left one in Fig. 1), particularly around the feedback.

3.1 Trigger to Deliver the Feedback

Feedback in ITSs is often designed to be triggered either by the system or ini-
tiated by the students [3,33]. One special type of feedback is suggestions or
supportive materials to help students move forward. It is common to provide
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Fig. 1. Key functions of Intelligent Tutoring Systems from Koedinger et al. [21] (left)
and Opportunities to Optimize LLM-based Feedback in ITS (right, adapted from [21]):
I - Trigger to deliver the feedback; II - Information needed to communicate with LLMs
as input; III - Content requested in the generated LLM feedback output; IV - Modality
for delivering feedback to students.

such feedback based on students’ request actions [17,18,30,46,57], as shown in
A of Fig. 1-left. However, in some other work, concerning that novices might lack
the metacognitive skills to identify when and what to ask for help, researchers
believed that the model-guided feedback delivery could scaffold learners better.
Therefore, Help Tutor was designed to provide metacognitive feedback automat-
ically after the system identifies learners’ misbehaviors [1]. While researchers
found that having this did not lead to higher learning gains, the concerns about
abusing feedback can be more serious when LLM is widely applied in educational
settings. On the one hand, students nowadays can access commercial LLM prod-
ucts easily for timely formative feedback on their progress or even direct answers,
so they are more likely to abuse them by asking for feedback too frequently. On
the other hand, to avoid over-reliance on these LLM tools, some self-regulated
learners might avoid asking for formative feedback, even when they are strug-
gling or unsure about their answers. With those two new phenomena in mind,
future research needs to find a balanced timing and optimized trigger to deliver
feedback and establish a more effective learning experience (I in Fig. 1-right).

3.2 Information Needed to Communicate with LLM as Input

Prompt engineering is an important step when using LLMs to generate feed-
back in the existing learning systems. Prompt engineering refers to the practice
of creating and optimizing prompts to communicate with large language mod-
els effectively. There are guidelines about how to generate effective prompts for
LLMs. For example, the CLEAR framework comprises five key principles to
achieve prompts for more effective AI-generated content creation [26]. Besides
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these general guidelines, the required information in prompts can vary based on
the specific roles AI is expected to take. When AI takes on the role of provid-
ing feedback to students’ answer inputs [27,34], information resources like the
grading rubric, the student answers, and the task description, are commonly
included in the prompt. While current implications have already integrated such
basic related information to generate prompts, one future direction could involve
incorporating various types of information into prompt engineering. For example,
many traditional ITSs represent students’ current understanding of the subject
as a model and adapt instructions to students’ needs based on it [54] (B in
Fig. 1-left). Such student models play an important role in understanding and
identifying students’ needs before offering appropriate adaptation [9]. Therefore,
to enhance the quality of LLM outputs in meeting individual student’s needs,
different layers of information from a student model, such as the estimations
of the student’s knowledge level, cognitive state, strengths or weaknesses, affec-
tive state, and meta-cognitive skills, can be integrated when conducting prompt
engineering in the context of education [9] (II in Fig. 1-right).

3.3 Content Requested in the Generated LLM Feedback Output

One type of ITS feedback output is a suggestion for the next action (C in Fig. 1-
left). When integrating LLM into learning systems, such output can also be
optimized using learning science theories (III in Fig. 1-right). Particularly, the
prevalent form of feedback in recent LLM-based learning systems is a high-level
natural language explanation without revealing the answer. In certain systems,
persistent student inquiries for the answer lead the feedback to progressively
reveal more comprehensive hints, culminating in responses that closely resem-
ble complete, bottom-out solutions. Although such feedback can assist students
in solving their problems, its effectiveness in promoting long-term learning is
uncertain. Should this feedback fail to facilitate learning, the LLM-based Intel-
ligent Tutoring System (ITS) might merely become an ineffective variant or, in
the best-case scenario, a duplicate of ChatGPT. To better trigger learning, this
section aims to encourage future feedback implementation guided by learning
sciences frameworks such as Bloom’s Taxonomy [23] and Knowledge-Learning-
Instruction (KLI) framework [22], and we employ the KLI framework as a guiding
example to illustrate how to select feedback content based on the knowledge type
to enhance learner outcomes. The KLI framework allocates learning processes
into three types: memory and fluency, induction and refinement, understanding,
and sense-making, and lists seven instructional principles that are effectively
robust within each category, all of which are backed by substantial experimental
validation.

For enhancing memory and fluency, instructional principles such as spacing,
testing, and optimized scheduling are pivotal. They focus on the timing and
frequency of practice repetitions. Feedback mechanisms like flashcards, visual
cues [25], or multiple-choice questions, inspired by the testing principle, offer
repeated practice opportunities at short intervals, reinforcing learning. While
spacing and optimization extend beyond feedback’s scope, their implementation
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in ITS is beneficial to effective instructional strategies in memory and fluency
processes.

For tasks involving induction and refinement processes, such as solving pro-
gramming or math problems, faded worked examples are effective in demonstrat-
ing the desired process with the appropriate level of assistance needed by fading
the demonstration to ensure the scaffolding is within Vygotsky’s Zone of Prox-
imal Development [28], tailored to the learner’s existing knowledge and areas
for growth. The implementation of faded worked examples into intelligent tutors
also resulted in higher learning efficiency and a deeper conceptual understanding
of the problems in existing ITS works [49].

For understanding and sense-making processes, self-explanation questions
are one of the most effective forms of feedback that elicit active learning and
deeper thinking [15]. Previous ITS works also support its effects on consolidating
learners’ understanding of fractions [44].

3.4 Modality for Delivering Feedback to Students

Due to technology limitations, traditional ITS systems mainly deliver feedback to
students as text (D in Fig. 1-left). Recent advancements in GenAI techniques pro-
vide opportunities to expand the spectrum of feedback modalities (IV in Fig. 1-
right) from text to images, audios, videos, and combinations of these modalities.
As the main focus of this paper is LLM-based feedback, we look into how GenAI
techniques could deliver such feedback to students in diverse modalities. We first
referred to classic multimedia learning principles [10] and chose related principles
that provide recommendations on how feedback might be delivered. Then, we
provided examples of recent GenAI techniques and corresponding commercial
applications that could be used to achieve such feedback modalities. Finally, for
each principle-based feedback modality, we provided one example use scenario.
We summarized these in Table 1. As new GenAI technologies are continuously
growing, we believe it is important for future work to look at both the principle
and technology sides to decide what feedback modalities should and could be
provided in different learning contexts.

3.5 Evaluate the Quality of the Generated Feedback

Existing studies has tested the scope of LLMs’ feedback generation capabilities
with data-driven system evaluation (whether the system can perform well on a
comprehensive testing dataset) [16] and expert evaluation (given an evaluation
matrix, the expert(s) would rate the performance of each feedback) [34,47,57] on
mainly precision and coverage [39,40]. Moreover, it is important to recognize the
contributions of GenAI-generated feedback as it expands the array of metrics for
assessing feedback quality beyond the traditional ITS evaluation scope, with new
metrics like appropriateness, conciseness, and comprehensiveness. Compared to
traditional feedback generation approaches, LLMs’ advantages in natural lan-
guage tasks enable the generation of personalized feedback with an encourag-
ing tone [47,57]. Taking a step further from examining the tone, studies have
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Table 1. Example feedback modalities supported by Generative AI techniques

Principle (Selected from [10]) Feedback modality Example GenAI Techniques Involved
(Example GenAI Applications)

Example Feedback Scenario

Multimedia Images Text-to-image (OpenAI DALL.E [36];
Stable Diffusiona; Runwayb)

Content-related images as visual cue
for vocabulary memorization

Personalization Text Text-to-text
(OpenAI GPTc; Anthropic Clauded;
Meta Llamae)

Text feedback in more informal and
conversational styles

Embodiment Human-like agent Text-to-image;
Text-to-video
(Runwayf ; OpenAI Sora [37])
Text-to-speech
(Deepgramg; OpenAI TTS modelsh;
WellSaid Labsi)

Virtual teaching assistant avatar
talking about the next-step hints

Modality Audio Text-to-speech Add audio feedback as a new option
to existing systems

Segmentation Segmented Text Text-to-text Apply LLMs to segment one
feedback into multi-levels of
feedback.

Redundancy Audio, Image, Video Text-to-speech; Text-to-image;
Text-to-video

When both audio and visual
feedback is generated, allow users to
turn off the text on screen

Temporal Contiguity Audio, Image, Video Text-to-speech; Text-to-image;
Text-to-video

When both audio and visual
feedback are generated, present
them simultaneously

Spatial Contiguity Text, Video Text-to-text; Text-to-video Place feedback close to the part that
it elaborates on

Coherence Text, Image Text-to-text; Text-to-image Evaluate whether existing content
are on-topic or not

Signaling Text Text-to-text Highlight the errors on the screen
ahttps://stability.ai/stable-image
bhttps://runwayml.com/ai-tools/text-to-image/
chttps://openai.com/gpt-4
dhttps://www.anthropic.com/news/claude-3-family
ehttps://llama.meta.com/
fhttps://runwayml.com/ai-tools/gen-2-text-to-video/
ghttps://deepgram.com/
hhttps://platform.openai.com/docs/models/tts
ihttps://wellsaidlabs.com/features/api/

also assessed the capability of GenAI to play specific roles (e.g., instructor [53],
student[48]) in the context of feedback generation. These initial assessments illu-
minate the potential to scale both the implementation and evaluation of specific
agents and their behaviors that are crafted according to learning sciences prin-
ciples, such as facilitating a growth mindset as an instructor or enhancing the
dynamics of a collaborative learning environment as a helpful peer.

In addition to system and expert evaluation, classroom deployment allows
researchers to gather feedback from real learners in authentic educational set-
tings. Under this context, student usage log data [19,20,24,43] and student self-
reported survey data [20,24,38] are two commonly gathered data types for LLM-
generated material evaluation. With few existing LLM-generated feedback works
applying these approaches, the next steps for evaluating this feedback could
involve: 1) designing controlled experiments with pre-post tests to assess learning
outcomes [4,42,55], and 2) employing learning analytics on log data to explore
feedback’s effectiveness on help-seeking [57] and learning [38] with greater detail

https://stability.ai/stable-image
https://runwayml.com/ai-tools/text-to-image/
https://openai.com/gpt-4
https://www.anthropic.com/news/claude-3-family
https://llama.meta.com/
https://runwayml.com/ai-tools/gen-2-text-to-video/
https://deepgram.com/
https://platform.openai.com/docs/models/tts
https://wellsaidlabs.com/features/api/
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and nuances. For instance, the impacts of feedback on learning outcomes can be
elucidated by performing a learning curve analysis to compare the slopes, which
represent varying learning rates under different feedback conditions [45]. Finally,
ethical concerns such as biases [56] and hallucination [8] associated with LLMs
could jeopardize an effective and equitable learning environment. Therefore, it
is crucial to incorporate relevant metrics into the evaluation of feedback quality
and mitigate these issues with automated approaches or human intervention.

4 Conclusion

To fully utilize the potential of generative AI in the educational context, it is
essential to approach its integration with pedagogical design. This paper synthe-
sized the progression of AIED focusing on feedback generation, emphasized the
importance of grounding the current LLM-based feedback generation in theoret-
ical frameworks and evidence-based approaches to prompt its learning effective-
ness, and suggested corresponding evidence-grounded implications through four
feedback generation stages. We aim to evoke the awareness of AIED researchers
and practitioners on the legacy of pre-LLM feedback generation efforts, and offer
a toolkit as a foundational resource for designing pedagogical LLM-based feed-
back generation systems that foster the advancement of the AIED field in the
era of generative AI.
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