Exploring How Multiple Levels of GPT-Generated Programming
Hints Support or Disappoint Novices

Ruiwei Xiao
ruiweix@andrew.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

ABSTRACT

Recent studies have integrated large language models (LLMs) into
diverse educational contexts, including providing adaptive pro-
gramming hints, a type of feedback focuses on helping students
move forward during problem-solving. However, most existing
LLM-based hint systems are limited to one single hint type. To
investigate whether and how different levels of hints can support
students’ problem-solving and learning, we conducted a think-
aloud study with 12 novices using the LLM Hint Factory, a system
providing four levels of hints from general natural language guid-
ance to concrete code assistance, varying in format and granularity.
We discovered that high-level natural language hints alone can be
helpless or even misleading, especially when addressing next-step
or syntax-related help requests. Adding lower-level hints, like code
examples with in-line comments, can better support students. The
findings open up future work on customizing help responses from
content, format, and granularity levels to accurately identify and
meet students’ learning needs.

CCS CONCEPTS

« Human-centered computing — Empirical studies in HCIL

KEYWORDS

Programming Hint, Large Language Model, GPT, Introductory Pro-
gramming, Help-seeking

ACM Reference Format:

Ruiwei Xiao, Xinying Hou, and John Stamper. 2024. Exploring How Multi-
ple Levels of GPT-Generated Programming Hints Support or Disappoint
Novices. In Extended Abstracts of the CHI Conference on Human Factors in
Computing Systems (CHI EA °24), May 11-16, 2024, Honolulu, HI, USA. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3613905.3650937

1 INTRODUCTION

Programming novices need in-time, effective support when getting
stuck. Intelligent programming tutors (IPTs) can generate adap-
tive feedback, which can be a scalable solution to beginners’ high
demands for help. In the past two years, LLMs have been demon-
strated to be effective in generating code fixes and explanations,
leading to their application in programming tutors for generating

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CHI EA 24, May 11-16, 2024, Honolulu, HI, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0331-7/24/05

https://doi.org/10.1145/3613905.3650937

Xinying Hou
xyhou@umich.edu
University of Michigan
Ann Arbor, Michigan, USA

John Stamper
jstamper@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania, USA

hints to students [15]. Current LLM-based systems mainly focus
on leveraging the language model’s advantage to provide hints as
formative feedback in more descriptive, high-level natural language,
imitating the human teaching assistant’s tone [13].

Despite the benefits of providing multiple levels of hints in in-
telligent tutoring systems studies [1], few studies investigated the
diversity in LLM-generated programming hints or how to deliver
these hints to maximize student learning. To bridge these gaps,
we leveraged existing literature on how to deliver formative feed-
back [26, 28] to develop the LLM Hint Factory, which provides 4
different levels of LLM-generated hints in a thread for each hint
request, from general natural language guidance to concrete code
snippet suggestion. We then conducted a user study with 12 novice
programming learners to complete three programming learning
tasks with pre- and post-test using the LLM Hint Factory. Results
showed that, delivering high-level natural language hints alone can
be insufficient, or sometimes even harmful to students, especially
when students are confused about next-step logic or syntax-related
details. Adding low-level hints, particularly example code pieces
with in-line comments can optimally help students in most cases.
This work provides a novel contribution by designing the LLM Hint
Factory, a system to provide scalable, high-quality programming
hints at various levels, and revealing patterns of appropriate hint
levels for varied help-seeking circumstances and the corresponding
reasons. This work also contributes to the field by highlighting the
need to distinguish students’ demands based on their help-seeking
contexts. The response to students’ help requests should be person-
alized in terms of content, format, and granularity to meet students’
diverse needs. It also opens up work into what and how future in-
structional agents, including educational chatbots and Al teaching
assistants, should be designed to respond to students’ diverse help
requests optimally.

2 RELATED WORK

2.1 Hint delivery in traditional intelligent
programming tutors

Hint is a special type of formative feedback. Hints provided in
programming problem-solving mostly focus on providing informa-
tion to guide learners towards the next steps for a correct solution
[19]. In traditional IPT research, different levels of hints have been
implemented with theoretical support and examined by empirical
evidence. Hints in some systems are designed in high-level natu-
ral language with limited programming syntax to simulate human
tutors. For instance, hints from a rule-based IPT Lisp tutor are pro-
vided in human tutors’ tone to explain how to do next [2]. Another
system, ITAP, is a data-driven Python programming tutor that also


https://orcid.org/0000-0002-6461-7611
https://orcid.org/
https://orcid.org/
https://doi.org/10.1145/3613905.3650937
https://doi.org/10.1145/3613905.3650937
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613905.3650937&domain=pdf&date_stamp=2024-05-11

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

provides one-sentence next-step suggestions in natural language
with location, value, action, and context information [22].

In contrast to providing natural language hints, other tutoring
systems provide more comprehensive and concrete support, such
as worked example code (a code solution to a similar problem)
and bottom-out code (the code solution to this problem) hints to
reduce students’ cognitive load. For example, iSnap [21] presents
the student’s buggy part of the code with suggested next-step code
side by side to demonstrate what to do next. In addition, Yahoo!
Pipes [14] provides external links containing worked examples to
learners as hints. What’s more, programming tutors that provide
on-demand Parsons problems related to the current question can
be content-wise seen as button-out code hints when students seek
for certain syntax on one of the lines or finish solving the Parsons
problem [7, 8]. Moving from single hint type to multi-levels of hints,
Suzuki et al. identified 5 types of hints through program synthesis
[29]. Providing multiple levels of hints for one request not only
provides learners with extended sources of help, but also allow
them to compare the helpfulness of different levels of hints under
different conditions. For example, Hint Factory [27] derives a hint
sequence into 4 parts: three of them focus on one of the certain
components in the question structure and one bottom-out hint on
the explicit action needed to proceed to the next step. What’s more,
Ask-Elle [6] organized descriptive and worked-out code hints of
the next step for all potential problem-solving strategies.

Regardless of the varied hint designs and their promising results
to support student learning, scalability remains a key challenge
across all levels of hint generation in traditional IPT systems. Con-
ventionally, delivering adaptive hints either require taxing expert
inputs (e.g. annotating answers [6], defining rules [2], etc.), or need
to be driven by a high volume, comprehensive dataset [22, 29]. The
emergence of LLMs provides a new opportunity to automate the
hint generation process and customize the hints to target students’
diverse needs.

2.2 LLM-Based Intelligent Programming Tutors

After recognizing the ability of LLMs to generate code fixes [17, 25],
explanations [3], and pedagogical conversations [30], significant
effort has been invested in the creation and evaluation of LLM-
based intelligent programming tutors with diverse content focus
and granularity. Most existing studies are dedicated to providing
higher-level hints in paragraphs of natural language and cautiously
avoid providing concrete solution-like code to prevent overuse
or over-reliance. However, some of these studies acknowledged
that students prefer to have hints with varied levels of details than
high-level ones alone [15, 23]. Meanwhile, Kazemitabaar et al. [9]
pointed out that having access to the Al code generator and gen-
erated code snippets did not impede learning gains. Therefore, we
believe that code examples for similar problems have the potential
to be incorporated as a more specific level of hints. Among the
recent deployment of LLM-based IPTs in intro CS education, to
our knowledge, no work has explored the effects of different hint
levels on student problem-solving. We identified only one study
that provided three levels of code explanation (line-by-line, sum-
mary, and key concepts) to students side-by-side in an E-book [17].
However, explanations in this system are additional instructional

Ruiwei Xiao, Xinying Hou, and John Stamper

explanations for instructional materials rather than hint feedback
to guide students to move forward in problem solving. Our work
distinguishes itself from existing approaches by comparing the
effects between different levels of next-step hints on supporting
novices’ problem-solving. More specifically, our system (the LLM
Hint Factory) provides four levels of hints for each hint request,
giving students full autonomy to use any hint level and ask for
hints whenever needed. Hint level design follows principles and
definitions in previous formative feedback work with an emphasis
on programming exercises[11].

3 LLM HINT FACTORY

Based on our goals, we designed and developed the LLM Hint
Factory, a system that provides four levels of hints, from the most
high-level natural language guidance to the most specific code
snippets, to CS1 students in real-time when they ask for help in
solving a programming task (Figure 1).

Hint Design in the LLM Hint Factory Programming hints
in the LLM Hint Factory are formative, next-step feedback within
an economy of words [5]. Compared to many existing LLM-based
IPTs, which provide long explanations mixed with small snippets of
code trying to resolve all issues in the student’s code, our feedback
is segmented into individual steps to break the information into
manageable chunks. By doing this, we aim to help learners manage
their essential processing in working memory to achieve better
learning. Given that even the bottom-out hints only contain part
of the solution, this can also prevent the potential over-reliance by
showing students a full LLM-generated answer [10]. Specifically,
we designed four levels of hints, from the highest level to the most
specific level: orientation hint, instrumental hint, worked example
hint, and bottom-out hint. The division of levels is originally in-
spired by the hint-level design and definition in Cognitive Tutor
[12], and we further grounded the definition into programming
context and added one more level, worked example hint into the
LLM Hint Factory. Prompts for different levels’ hints generation
can be found in Appendix A.

LLM Hint Factory Interface LLM Hint Factory shares great
similarities to a typical online programming environment (Figure 1).
The left panel includes the problem description and a clickable link
to check the input data; the right panel contains a code editor and a
"Hint” tab. Students can click “New Hint” to generate a set of four
hints based on the current question information and code state, and
click “Be More Specific” to read a more explicit hint targeting the
same sub-step or click "Be More General" to navigate to the last hint
level. The button-triggering for more specific level of hint design
adheres to scaffolding guidelines in learning sciences research [18],
which suggest to provide just right level of assistance needed by
each individual.

4 METHOD

To understand the effectiveness of diverse levels of programming
hints, we conducted an IRB (Institutional Review Board)-approved
think-aloud study with a pre-test and post-test to investigate how
these hints could help students with programming problem-solving
and contribute to learning.



Exploring How Multiple Levels of GPT-Generated Programming Hints Support or Disappoint Novices

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

2. MBTI @

Description Run Submit

You are interested in the MBTI distribution and collected MBTI

profiles from your classmates in student_mbti.csv . Genders 3
are categorized as, 'F' for females, 'M' for males, and 'NB' for ;
non-binaries. Write a Python script that reads the data from 6
the csv file and returns the most common MBTI type among 7
females in your class. The final result should be a string. 8
Hint

Input: student_mbti.csv

1 S001 NB ENTJ

&

. 3

$002 f ESFP 4
5

6

Output: a string of the most common MBTI type. For example,
< Be More General

the output is ENFP if it is the most common type @

1 file_path 'coding_problems/mbti/student_mbti.csv'

Student Id Gender MBTI @ What to do next:
ou are on the right track by correctly setting the file path®

Now, let us focus on opening the file using this path.

New Hint Be More Specific -,

How to do next:

@

Remember to use open() to open the file.

1
2
3
4

@ Example demonstration:

1 # here is a similar example with
2 # different variable names:

3 data_path = 'path/to/data.csv’
@ 4 data_file = open(data_path, "r")

Solution to the next step:

1 # open the csv file using the file path

f = open(file_path, "r")

3
4

®

Figure 1: LLM Hint Factory Interface. (1) Problem description; (2) Code editor; (3) Hint Section; (3.1) Orientation Hint: the 1st
level hint, informs students where they should focus; (3.2) Instrumental Hint: the 2nd level hint, informs students how to do
next in concise, descriptive sentences; (3.3) Worked Example Hint: the 3rd level hint, shows students an example code snippet
that is similar to the code they need to write for their next step to solve the current problem; (3.4) Bottom-Out Hint: the 4th
level hint, shows students the exact code they need to write for the next step to solve the current problem; (4) Click "Be More
General" button to see the previous level’s hint; (5) Click "Be More Specific" to see the next level’s hint; (6) Click "New Hint" to

generate a new set of hint.

Participants Twelve undergraduate and graduate students were
recruited from both a private research institution and a public uni-
versity in the United States. These students are currently enrolled
in or have only taken introductory computer science classes for
non-CS majors. To verify the eligibility of the participants, we
implemented a screening question designed to confirm that each
participant has only taken the CS1 class using Python.

Study Procedure The think-aloud session started after checking
the students’ ages. During this one-hour session, participants first
received a 5-minute introduction about the study consent, experi-
ment procedure, and interface. Then participants spent 10 minutes
on the pre-test, 30 minutes on the learning session, and 10 minutes
on the post-test. Finally, participants received a 5-minute structured
interview about their experiences using the multiple levels of hints
(3.1 to 3.4 in Figure 1) in the LLM Hint Factory. The interviews
aimed at understanding students’ opinions on hints they received,
such as whether they were comprehensible and helpful, and their
suggestions for future improvement.

Experiment Materials Three programming tasks (Figure 1
demonstrates one of these tasks) about data analysis in Python
were designed as practice problems for the learning session. To
guarantee that the questions and their difficulty levels were suitable
for our participants, we adapted them from the homework materials
from the two classes from which we recruited, thus participants
would be more likely to have the necessary prior knowledge and
manage to complete tasks in the given time. The pre-test included
eight test questions (1 open-ended, 3 multiple-choice questions, and
4 code-writing questions) about basic data extraction. The post-test
contains identical programming questions as the pre-test.

5 RESULTS
5.1 Overall Hint Quality in the LLM Hint
Factory

5.1.1 LLM Hint Factory can generate high-quality multiple levels of
hints. We first conducted an expert evaluation of the hint quality
generated during the user study. We defined a coding rubric to
evaluate the quality of generated hints from 6 dimensions (table
1). The rubric was designed based on previous formative feedback
design studies [4, 26] and existing works on LLM-generated pro-
gramming hint evaluation [20, 23]. Following this coding rubric,
two expert raters randomly sampled 20% of hint requests (resulting
in 304 unique hints) generated during the user study to calculate the
inter-rater reliability. Due to the high prevalence of the “Yes” label
and binary classes, we applied the percent agreement approach
and achieved a high agreement across dimensions. Next, two raters
met and resolved the disagreements in their codes and refined the
rubric. Then, one rater coded the rest of the data. Besides the man-
ual coding on the first five criteria, the average length of each type
of hint was aggregated automatically. The full evaluation results
are in Table 2, and example hints fall into each category can be
found in Appendix B.

Overall, all four levels of hints generated by the LLM Hint Factory
are comprehensible and well-targeted to the prompt instruction at
the correct level of detail. For the appropriate category, 88.16% of the
orientation hints and 84.21% of the instrumental hints can point out
and elaborate one problem at a time, and for the lower level hints,
75% of the worked example hints and 78.95% of the bottom-out hints
can elaborate on the previous two levels of natural language hints
and response with Python code pieces. However, we observed that
sometimes the lower-level hints (worked example and bottom-out
hints) contain code for more than one step, such as correcting the



CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Ruiwei Xiao, Xinying Hou, and John Stamper

Table 1: The expert evaluation rubric across six categories: Appropriate, Targeted, Comprehensible, Encouragement, Alignment
and Length. While Alignment evaluate the interrelationship among a set of four hints, other criteria target per hint level.

Category

Definition

Appropriate - (Yes/No)
Target - (Yes/No)
Comprehensible - (Yes/No)
Encouragement - (Yes/No)
Alignment - (0-1)

Is the hint a suitable next step to construct a solution given the learners’ current code and its level?
Does the generated hint target the required level?

Is the generated hint understandable?

Does the generated hint provide any form of encouragement?

Does the content of each level of hint align with other levels?

0: none of them align with each other; 0.25: only two of them align with each other.
0.5: pairs align with each other; 0.75: three of them align with each other; 1: all hints are well-aligned.

Length

For orientation and instrumental hints, what are the number of sentences

and number of words in each hint? For worked examples and bottom-out
hints, what are the lines of code in each hint?

Table 2: The expert evaluation results on Appropriate, Targeted, Comprehensible and Length for each level of hints.

Type Appropriate Targeted Comprehensible Length
Overall 81.91% 99.67% 98.36% -
Orientational 88.16% 100% 98.68% 30 words; 2 sentences
Instructional 84.21% 98.68% 100% 29 words; 2 sentences
Worked-Example 75% 100% 100% 12 lines of code
Bottom-Out 78.95% 98.68% 93.42% 7 lines of code

import library part and the for loop in one single hint, which was
considered inappropriate in this category. Regarding the alignment
of the four levels of hints, the average alignment among 4 levels
of hints in each hint request is 78.62%, which means that at least
three hints in one request focus on the same problem. According
to length, for the first two levels of natural language hints, most of
them are around 30 words in two sentences. For the remaining two
levels of hints (code hints), their average lengths are 12 and 7 lines
respectively, with in-line code explanation comments (Table 2).

5.1.2  High-quality hints are not always helpful for students’ problem-
solving. We next looked at student interaction logs and recordings
to further unpack the effectiveness of hints in guiding students
to take correct actions. We found that, out of the expert-labeled
high-quality hints, 77.78% helped students move forward on the
right track in problem-solving.

So what happened to those unresolved help requests? We con-
ducted thematic coding on students’ log data and interview tran-
scripts, and the results showed that 1.43% hints were misunderstood
by the students and therefore led to negative effects. For exam-
ple, after reading one worked example hint, P2 copied the code

gender = row[0] without noticing the comment saying that,

# Assuming each row has ‘gender’ in the first column |,
which introduced a wrong index error to their code. The remaining
27.14% sets of hints did not have an observable impact on students’
progression. For these correct hints, some of them lack visual aids
to draw students’ attention (e.g. the line of code to import csv in
the worked example has been missed by three participants). Some
other ones were answering questions that misaligned with learners’
questions in mind, making the comprehension process harder.

Students’ low motivation to learn and high anxiety levels might
also impact the forage of critical information in hints. These learn-
ers’ urge for a direct solution might hinder their comprehension in

understanding their current problem. This example demonstrated
how one hint is helpful for P10 but not as helpful for P2. When they
received the same orientation hint [Now, let’s focus on filtering the
data for females before counting MBTI types], P10 skimmed the prob-
lem description again and said "Oh, I misread the question, I should
only count the most common MBTI type for females", and added
the if statement in the code for the desired target. In contrast,
P2 could not identify the error even after reading the hint aloud
and never referred back to the problem description. Based on P2’s
frequent request for hints even before reading the question prompt,
the low learning motivation and high anxiety on task completion
may hinder the information forage from hints.

5.2 The Effectiveness of Different Levels of
Programming Hints for Supporting Novices

5.2.1 Providing hints till the level of worked example can assist
students properly. To understand the impact of different levels of
hints, we looked at both student progress during learning sessions
and their changes from pre-test to post-test. Recall that students
received four levels of hints for each hint request, and the expected
behavior of using a hint is to guide students toward correct changes.
Therefore, we started with investigating the hint level that students
needed to reach to modify the code correctly during the learning
session. Among those hints labeled as appropriate by experts, in 35
(59.32%) of the instances, students were able to make correct code
changes after students saw the worked-example hints; and in 5
instances, students correctly modified code after receiving bottom-
out hints. In addition, while students generally revealed positive
reactions (e.g. saying "that makes sense”) to the high-level hints,
lower-level example code hints were more likely to lead to correct
programming actions. For example, P24 requested a hint because
she forgot the syntax of a for loop. When seeing the instrumental
hint, she said "Yeah which is exactly where I'm stuck at, but I want to



Exploring How Multiple Levels of GPT-Generated Programming Hints Support or Disappoint Novices

know the exact syntax" and immediately moved on to the example
code hint. When reading through the example code in this hint, she
stated, "Oh yeah, true, looks like the correct syntax should not be the
curve bracket. I should use the column." Then they changed to the
correct syntax, said "..I wanna stop here and try to run again and
see...", and did not proceed to the bottom-out hint.

As pre- and post-test shared the same questions, we also com-
pared student answers from pre- to post-test to investigate how
different levels of hints played a positive role in assisting students’
expansion and refinement of their programming knowledge. For
example, P5 could not write import csv in the pretest, struggled
with the same item during learning session until seeing a worked ex-
ample hint, and wrote this line correctly in the post-test. We found
that, for those who made positive changes from pre- to post-test, all
of them corrected their misconception or added new knowledge af-
ter absorbing the content in the last two levels of hints. Specifically,
75% of them were satisfied with the worked example hints and did
need to get to the bottom-out level, while 25% still needed to get to
the bottom-out level to make meaningful changes. Deriving from
both hint request data and pre-post tests data, we deduced that
hints up to the level of a worked example code can deliver proper
help, primarily due to its frequent effectiveness and its balance be-
tween specificity, surpassing the high-level hints. Also, compared
to bottom-out code hints, applying a worked example code hint
requires higher cognitive engagement, which can encourage more
meaningful learning.

5.2.2  Worked example hints provide comprehensive help on next-
step and syntax-related hint requests. To further examine the po-
tential circumstances when each level of hint could be helpful, we
contextualized learners’ reasons to request help in programming
learning as six types as shown in Table 3, following the help-seeking
model [24]. After categorizing motivations of hint requests, we
mapped effective levels of hints by the type of requests (Figure 2).
Our results showed that, when students’ confusions pertained to
the progression to the next step or were syntax-related (the request
types NL, NS, DS), most of their correct actions have not been taken
until they saw the worked example hints. Drawing from these ob-
servations, it is recommended to furnish students with exemplar
code blocks, particularly when their confusions are related to the
progress to the next-step (NL, NS requests) or programming syntax
(DL, DS requests).

When being asked about why the worked example hints are help-
ful for next-step or syntax-related requests, participants highlighted
that applying the help from the worked example is straightforward,
code-to-code level of help, while high-level hints require more tacit
knowledge such as translating natural language into programming
language or code structure visualization. P2 thought the example
hint was useful as, "when I had like, a little bit of confusion like I
think I knew what I had a general idea from high-level hints what I
was supposed to do but not didn’t know how to execute it". In another
case, when P8 cannot tell when to write a return and when not
to, she did not realize there is no function definition in her code
when reading the instrumental hint, [return should be inside of a
function structure]. However, she found this part out immediately
when she compared her code with the worked example hint and

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

saw the function structure in the worked example was not in her
code.

- 14
Orientation 2 0 5 0 0 3
Instrumental 5 1 4 2 3 0
worea e [ - s 4 1
Bottom-Out 2 1 1 1 0 0
Next-Step Next-Step Debug Debug Previous Hint Others
Logic Syntax Logic Syntax Not Helpful -0

Figure 2: Number of effective level of hint for each help-
seeking type. Most of requests related to next-step (NL, NS)
and syntax (NS, DS) are will be resolved when learners uti-
lized worked example hints. Most of DL requests can be an-
swered by high-level hints.

5.2.3 High-level hints can provide more concise help for students to
debug logic errors. For requests about logic debugging (DL), provid-
ing high-level (orientation, instrumental) natural language guidance
is often sufficient for students to effectively address and resolve
errors. Multiple participants (n=4) have been reminded by the first
two levels’ hints to include data for females only as the problem
description required, and one participant corrected the values they
store for each company after seeing [The first error is that you’re
not updating the total launches for each company. Both successful
and unsuccessful launches should be counted in the total.]

5.2.4 High-level hints can cause more misunderstanding and frus-
tration than low-level hints. 33.3% of the students (n=4) reported
their frustration when the high-level hints repeated things they al-
ready know. For example, P5 expressed as "I got a little bit frustrated
because... It was telling me something I already knew.". Moreover,
high-level hints can be easily misinterpreted due to their unspeci-
fied, descriptive nature. When P10 saw the orientation hint [This
is a really good start, you’re on the right track with opening the file.
Now, let’s focus on reading the CSV file into a 2-D list.], they misun-
derstood the 2-D list as the output data structure of the final result,
while it actually means the input data structure. Such misunder-
standing was not clarified until they saw the code in the worked
example hint. Additionally, high-level erroneous hints are harder to
identify than low-level ones since errors in code blocks are easier
to compare and more concrete. In this study, all three misleading
hints that caused incorrect actions were high-level ones, while in
every instance where participants received a buggy low-level hint,
they were able to identify the errors.

6 LIMITATIONS

There are three major limitations to this study. The primary lim-
itation to the generalization of these results is the small sample
size of 12 programming novices from two research universities
and the limited scope of knowledge used in the experiment. More
generalizable findings need to be drawn from larger and more
diverse participant populations with more different CS1 program-
ming problems. Also, empirical use cases of the system can vary
from experiment settings, and further classroom studies need to
be conducted to further evaluate the effectiveness of hints. Lastly,
the performance and cost of this system highly rely on models



CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

Ruiwei Xiao, Xinying Hou, and John Stamper

Table 3: Six help-seeking types during programming problem-solving process. Adapted from the help-seeking model [24].

Type

Definition

Next-Step Logic (NL)
Next-Step Syntax (NS)
Debug Logic (DL)

When a student cannot figure out the logic of the next step.
When a student knows the logic of the next step but do not know the syntax.
When student wants to debug code with errors in logic, such as the

misunderstanding of problem description.

Debug Syntax (DS)

When student wants to debug code with errors in syntax like wrong indentation.

Previous Hint Not Helpful (PNH) When a student request for a new hint because the previous hint is not helpful.
Others When a student asks for hints without a clear purpose, in our context, this type
of request happens when learners are curious about this feature and try it out.

developed by OpenAl Open-source, domain specific models would
make this system more affordable and adjustable for researchers
and educational practitioners.

7 DISCUSSION

In this work, to investigate the effectiveness of multi-level hints
during programming problem-solving, we conducted a think-aloud
study with 12 novices using the LLM Hint Factory. Our main finding
is that, high-level hints are often insufficient to assist learners’
requests, and providing code example level hint can assist students
more properly. We propose the following design suggestions for
our ongoing system improvement and future LLM-based learning
systems.

7.1 Design Suggestion 1: Personalize the help
response design under different
circumstances

To avoid the rising concerns of over-reliance on LLM in learning
contexts, existing GPT-powered programming tutors are deliber-
ately designed to be natural language focused. The goal for this
design is to assist students in concept understanding rather than
giving the solution straight away. However, our results suggest
that, in most cases, providing high-level hints alone are insufficient
to help students, especially on next-step-related and syntax-related
help requests. Moreover, the concise nature of the high-level hints
could confuse students and cause frustration. This could lose their
trust, prompting students to switch to ChatGPT for a full answer.
Such findings suggest that the responses to students’ help requests
should be personalized based on their existing problem-solving
stage and prior knowledge level.

7.2 Design Suggestion 2: Design semi-structured
help-seeking interaction for flexibility and
convenience

Rather than more free-style chatbot interaction, the LLM Hint Fac-
tory chose a more structured, button-triggered help-seeking inter-
action to make hints more accessible by reducing learners’ burden
of prompting quality questions, which novices are particularly bad
at[15]. However, seven participants mentioned in the interview that
this lack of flexibility sometimes resulted in misalignment between
students’ questions in mind and the problem hints tried to address,
which reduced the perceived helpfulness of the hints. In the future,
we intend to design a more scaffolded hint request interaction such
as including a menu to allow students to select help request type

or a grounded abstraction matching approach to enhance learners’
question-asking technique [16]. From a learners’ perspective, this
interaction is flexible and convenient and potentially helps to de-
velop skills such as debugging and planning. From the system’s
perspective, the hints content will be less likely to be misaligned
with students, and the level shown to students can also be adapted
based on the request type.

8 CONCLUSION

In this paper, we used the LLM Hint Factory to evaluate the effec-
tiveness of multiple levels of hints on student problem-solving and
learning. Our main finding is that, unlike offering high-level natural
language hints alone, delivering LLM-generated hints to the level of
worked example hints can provide a sufficient amount of detail in a
straightforward way to students. This can facilitate their thinking
and enable them to correctly proceed to the next step more effec-
tively. The findings emphasize the need to customize responses to
students’ help requests from content, format, and granularity levels
to accurately identify and meet student needs in future learning
systems.

REFERENCES

[1] Vincent Aleven, Ido Roll, Bruce M McLaren, and Kenneth R Koedinger. 2016.
Help helps, but only so much: Research on help seeking with intelligent tutoring
systems. International Journal of Artificial Intelligence in Education 26 (2016),
205-223.

[2] John R. Anderson and Brian J. Reiser. 1985. The LISP tutor. Byte 10, 4 (1985),
159-175. https://www.academia.edu/download/3240480/TheLISPTutor.pdf

[3] Eason Chen, Ray Huang, Han-Shin Chen, Yuen-Hsien Tseng, and Liang-Yi Li.
2023. GPTutor: a ChatGPT-powered programming tool for code explanation. In
International Conference on Artificial Intelligence in Education. Springer, Tokyo,
Japan, 321-327.

[4] Tyne Crow, Andrew Luxton-Reilly, and Burkhard Wuensche. 2018. Intelligent
tutoring systems for programming education: a systematic review. In Proceedings
of the 20th Australasian Computing Education Conference (ACE ’18). Association
for Computing Machinery, New York, NY, USA, 53-62. https://doi.org/10.1145/
3160489.3160492

[5] Paul Denny, James Prather, Brett A. Becker, Catherine Mooney, John Homer,

Zachary C Albrecht, and Garrett B. Powell. 2021. On Designing Programming

Error Messages for Novices: Readability and its Constituent Factors. In Pro-

ceedings of the 2021 CHI Conference on Human Factors in Computing Systems

(CHI °21). Association for Computing Machinery, New York, NY, USA, 1-15.

https://doi.org/10.1145/3411764.3445696

Alex Gerdes, Bastiaan Heeren, Johan Jeuring, and L. Thomas van Binsbergen.

2017. Ask-Elle: an Adaptable Programming Tutor for Haskell Giving Automated

Feedback. International Journal of Artificial Intelligence in Education 27, 1 (March

2017), 65-100. https://doi.org/10.1007/s40593-015-0080-x

[7] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2022. Using Adaptive Parsons
Problems to Scaffold Write-Code Problems. In Proceedings of the 2022 ACM Con-
ference on International Computing Education Research - Volume 1. ACM, Lugano
and Virtual Event Switzerland, 15-26. https://doi.org/10.1145/3501385.3543977

[8] Xinying Hou, Barbara Jane Ericson, and Xu Wang. 2023. Understanding the
Effects of Using Parsons Problems to Scaffold Code Writing for Students with

G


https://www.academia.edu/download/3240480/TheLISPTutor.pdf
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3160489.3160492
https://doi.org/10.1145/3411764.3445696
https://doi.org/10.1007/s40593-015-0080-x
https://doi.org/10.1145/3501385.3543977

=

Exploring How Multiple Levels of GPT-Generated Programming Hints Support or Disappoint Novices

Varying CS Self-Efficacy Levels. In Proceedings of the 23rd Koli Calling Interna-
tional Conference on Computing Education Research. ACM, Koli, Finland, 1-12.
Majeed Kazemitabaar, Justin Chow, Carl Ka To Ma, Barbara J. Ericson, David
Weintrop, and Tovi Grossman. 2023. Studying the effect of AI Code Generators
on Supporting Novice Learners in Introductory Programming. In Proceedings
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI °23).
Association for Computing Machinery, New York, NY, USA, 1-23. https://doi.
org/10.1145/3544548.3580919

Majeed Kazemitabaar, Xinying Hou, Austin Henley, Barbara Jane Ericson, David
Weintrop, and Tovi Grossman. 2023. How novices use LLM-based code generators
to solve CS1 coding tasks in a self-paced learning environment. In Proceedings of
the 23rd Koli Calling International Conference on Computing Education Research.
ACM, Koli, Finland, 1-12.

Hieke Keuning, Johan Jeuring, and Bastiaan Heeren. 2019. A Systematic Literature
Review of Automated Feedback Generation for Programming Exercises. ACM
Transactions on Computing Education 19, 1 (March 2019), 1-43. https://doi.org/
10.1145/3231711

Kenneth R. Koedinger and Vincent Aleven. 2007. Exploring the Assistance
Dilemma in Experiments with Cognitive Tutors. Educational Psychology Review
19, 3 (Sept. 2007), 239-264. https://doi.org/10.1007/510648-007-9049-0

Harsh Kumar, Ilya Musabirov, Joseph Jay Williams, and Michael Liut. 2023.
QuickTA: Exploring the Design Space of Using Large Language Models to Provide

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

[26] Valerie J. Shute. 2008. Focus on Formative Feedback. Review of Educational

Research 78, 1 (March 2008), 153-189. https://doi.org/10.3102/0034654307313795
John Stamper, Tiffany Barnes, Lorrie Lehmann, and Marvin Croy. 2008. The
hint factory: Automatic generation of contextualized help for existing computer
aided instruction. In Proceedings of the 9th International Conference on Intelligent
Tutoring Systems Young Researchers Track. Springer, Montreal,Canada, 71-78.

[28] John Stamper, Michael Eagle, Tiffany Barnes, and Marvin Croy. 2013. Ex-

perimental evaluation of automatic hint generation for a logic tutor. In-
ternational Journal of Artificial Intelligence in Education 22, 1-2 (2013), 3-
17.  https://content.iospress.com/articles/international-journal-of-artificial-
intelligence-in-education/jai029 Publisher: IOS Press.

Ryo Suzuki, Gustavo Soares, Elena Glassman, Andrew Head, Loris D’Antoni, and
Bjorn Hartmann. 2017. Exploring the Design Space of Automatically Synthesized
Hints for Introductory Programming Assignments. In Proceedings of the 2017
CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’17). Association for Computing Machinery, New York, NY, USA, 2951-2958.
https://doi.org/10.1145/3027063.3053187

Anais Tack and Chris Piech. 2022. The Al Teacher Test: Measuring the Pedagogical
Ability of Blender and GPT-3 in Educational Dialogues. In Proceedings of the 15th
International Conference on Educational Data Mining, Antonija Mitrovic and Nigel
Bosch (Eds.). International Educational Data Mining Society, Durham, United
Kingdom, 522-529. https://doi.org/10.5281/zenodo.6853187

Support to Students. In Learning Analytics and Knowledge Conference. Learning
Analytics and Knowledge Conference 2023 (LAK’23), ACM, Arlington, Texas.
Sandeep Kaur Kuttal, Anita Sarma, and Gregg Rothermel. 2013. Debugging sup-
port for end user mashup programming. In Proceedings of the SIGCHI Conference
on Human Factors in Computing Systems (CHI ’13). Association for Computing
Machinery, New York, NY, USA, 1609-1618. https://doi.org/10.1145/2470654.
2466213

[15] Mark Liffiton, Brad Sheese, Jaromir Savelka, and Paul Denny. 2023. CodeHelp: Us-

ing Large Language Models with Guardrails for Scalable Support in Programming

Classes. https://arxiv.org/abs/2308.06921v1

Michael Xieyang Liu, Advait Sarkar, Carina Negreanu, Benjamin Zorn, Jack

Williams, Neil Toronto, and Andrew D. Gordon. 2023. “What It Wants Me To

Say”: Bridging the Abstraction Gap Between End-User Programmers and Code-

Generating Large Language Models. In Proceedings of the 2023 CHI Conference

on Human Factors in Computing Systems (CHI "23). Association for Computing

Machinery, New York, NY, USA, 1-31. https://doi.org/10.1145/3544548.3580817

Stephen MacNeil, Andrew Tran, Arto Hellas, Joanne Kim, Sami Sarsa, Paul

Denny, Seth Bernstein, and Juho Leinonen. 2023. Experiences from Using Code

Explanations Generated by Large Language Models in a Web Software De-

velopment E-Book. In Proceedings of the 54th ACM Technical Symposium on

Computer Science Education V. 1. ACM, Toronto ON Canada, 931-937. https:

//doi.org/10.1145/3545945.3569785

[18] Shoaib Ahmed Malik. 2017. Revisiting and re-representing scaffolding: The two

gradient model. Cogent Education 4, 1 (2017), 1331533.

Samiha Marwan. 2021. Investigating Best Practices in the Design of Automated Hints

and Formative Feedback to Improve Students’ Cognitive and Affective Outcomes

- Samiha Marwan PhD Thesis - 2021. Ph.D. Dissertation. North Carolina State

University. https://doi.org/10.13140/RG.2.2.13347.32805

[20] Huy A. Nguyen, Shravya Bhat, Steven Moore, Norman Bier, and John Stamper.

2022. Towards Generalized Methods for Automatic Question Generation in

Educational Domains. In Educating for a New Future: Making Sense of Technology-

Enhanced Learning Adoption (Lecture Notes in Computer Science), Isabel Hilliger,

Pedro J. Mufioz-Merino, Tinne De Laet, Alejandro Ortega-Arranz, and Tracie

Farrell (Eds.). Springer International Publishing, Cham, 272-284. https://doi.org/

10.1007/978-3-031-16290-9_20

Thomas W. Price, Yihuan Dong, and Dragan Lipovac. 2017. iSnap: Towards

Intelligent Tutoring in Novice Programming Environments. In Proceedings of the

2017 ACM SIGCSE Technical Symposium on Computer Science Education. ACM,

Seattle Washington USA, 483-488. https://doi.org/10.1145/3017680.3017762

Kelly Rivers and Kenneth R. Koedinger. 2017. Data-Driven Hint Generation in

Vast Solution Spaces: a Self-Improving Python Programming Tutor. International

Journal of Artificial Intelligence in Education 27, 1 (March 2017), 37-64. https:

//doi.org/10.1007/s40593-015-0070-z

Lianne Roest, Hieke Keuning, and Johan Jeuring. 2024. Next-Step Hint Genera-

tion for Introductory Programming Using Large Language Models. In Proceedings

of the 26th Australasian Computing Education Conference. ACM, Melbourne, Aus-

tralia, 144-153.

[24] Ido Roll, Vincent Aleven, Bruce M. McLaren, and Kenneth R. Koedinger. 2011.
Improving students’ help-seeking skills using metacognitive feedback in an
intelligent tutoring system. Learning and Instruction 21, 2 (April 2011), 267-280.
https://doi.org/10.1016/j.learninstruc.2010.07.004

[25] Shubham Sahai, Umair Z Ahmed, and Ben Leong. 2023. Improving the Coverage
of GPT for Automated Feedback on High School Programming Assignments.
In NeurIPS’23 Workshop Generative Al for Education (GAIED). MIT Press, New
Orleans, Louisiana, USA, 46.

[14

[16

=
=

[19

[21

[22

[23


https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3544548.3580919
https://doi.org/10.1145/3231711
https://doi.org/10.1145/3231711
https://doi.org/10.1007/s10648-007-9049-0
https://doi.org/10.1145/2470654.2466213
https://doi.org/10.1145/2470654.2466213
https://arxiv.org/abs/2308.06921v1
https://doi.org/10.1145/3544548.3580817
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.1145/3545945.3569785
https://doi.org/10.13140/RG.2.2.13347.32805
https://doi.org/10.1007/978-3-031-16290-9_20
https://doi.org/10.1007/978-3-031-16290-9_20
https://doi.org/10.1145/3017680.3017762
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1007/s40593-015-0070-z
https://doi.org/10.1016/j.learninstruc.2010.07.004
https://doi.org/10.3102/0034654307313795
https://content.iospress.com/articles/international-journal-of-artificial-intelligence-in-education/jai029
https://content.iospress.com/articles/international-journal-of-artificial-intelligence-in-education/jai029
https://doi.org/10.1145/3027063.3053187
https://doi.org/10.5281/zenodo.6853187

CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA Ruiwei Xiao, Xinying Hou, and John Stamper

A PROMPT FOR EACH LEVEL OF HINT
A.1 Example student’s current code state

A.1.1  Problem Description. You have an ice cream shop with ordering data stored in orders.csv. Your task is to find the best seller(s) and
print it out.

A.1.2 Student’s Code. The following is the code when the student triggered the "New Hint" button for help.

import csv
with open('csvIceCreamShop.csv', 'r') as file:
reader = csv.reader(file)
data = list(reader)
for row in data:
print(row)

A.2 Orientation Hint
A.2.1 Definition. The hint informs students where they should focus.

A.2.2  Related Prompt. The next-step hint should include at most one incomplete subgoal without any other information. The response
should be within 10-50 words. Do not list the errors and subgoals directly. The rest of the hint should be consistent with the suggestion in
this hint.

A.2.3  Example. This is a really good start! You’ve successfully read the data into a list. Now, let’s focus on the next subgoal: looping over
each line in the data.

A.3 Instrumental Hint

A.3.1 Definition. The hint informs students how to do next in concise, descriptive sentences.

A.3.2  Related Prompt. Describes the first error and the correct way to do it without providing a specific solution. The response should be
within 10-50 words.

A.3.3  Example. The first error is that you are printing each row instead of counting the flavors. You need to loop through each row and
update the count of each flavor in a dictionary.

A.4 Worked Example Hint

A.4.1  Definition. The hint shows students an example code snippet that is similar to the code they need to write for their next step to solve
the current problem.

A.4.2  Related Prompt. Provides a similar example code in different scenarios and variable names similar to the bottom-out code. The
number of lines and code syntax should be exactly the same as the code in the instrumental hint.

A.4.3  Example. # Imagine you have a bookstore and you want to find out which genre is the most popular. You would do something like
this:
for row in data:
genre = row[1] # Assuming the genre is in the 2nd column
if genre in genre_counts:
genre_counts[genre] += 1
else:
genre_counts[genre] = 1

A.5 Bottom-Out Hint

A.5.1 Definition. The hint shows students the exact code they need to write for the next step to solve the current problem.

A.5.2  Related Prompt. Follow the suggestion in the worked example hint, if the student’s code has no error and is just incomplete, the hint
code should be longer than the student’s code. provides the correct version of code on the line(s) first error occurred, or the next substep this
student needs to take within 5 lines of code. The code should be organized into an html code block or in an ace editor, and the explanation
should be written as in-line comments of code. ALL of this hint should be written in code editor.

A.5.3  Example. # Let’s focus on counting the flavors. You'll need to loop through each row and update the dictionary with the count of
each flavor.



Exploring How Multiple Levels of GPT-Generated Programming Hints Support or Disappoint Novices CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA

# Assuming the flavor is in the first column (index @)
for row in data:
flavor = row[0]
if flavor in flavour_counts:
flavour_counts[flavor] += 1
else:
flavour_counts[flavor] = 1

B EXAMPLE OF GOOD AND BAD HINTS FOR EACH CRITERIA

B.1 Appropriate
B.1.1 Student’s Code.

import csv

file_path = 'coding_problems/icecream/csvIceCreamShop.csv'
best_sellers = []

f = open(file_path, "r")

reader = csv.reader(f)

data = list(reader)

B.1.2  Example Appropriate Bottom-Out Hint. When hint gives information within one step:

data = list(reader)
for row in data:
# iterate through all items in data

B.1.3 Example Not Appropriate Bottom-Out Hint. When hint gives information for more than one step:

data = list(reader)
for row in data:
for flavor in row:
if flavor in best_sellers:
best_sellers['flavor'] += 1
else:
best_sellers['flavor'] = @

B.2 Target

B.2.1 Example Hint Targeting on orientational level. You are moving forward! You successfully read the data, and now try to iterate
through the items in data.

B.3 Comprehensible

B.3.1 Example Comprehensible Hint. The first error is that you’re not separating the counts by gender. You need to have separate counts
for each gender to find the most common MBTI type among females.

B.3.2  Example Not Comprehensible Hint. This is a really good start! You’re on the right track with setting up a dictionary to count the
MBTI types. Now, focus on how you’re updating the counts in the dictionary.

B.4 Encouragement
B.4.1 Example Encouraging Hint. This is a really good start, and you’re on the right track with using a dictionary to count the

MBTI types. However, consider how you’re currently counting MBTI types for all genders together.

B.4.2 Example Not Encouraging Hint. Consider how you’re currently counting MBTI types for all genders together.

B.5 Alignment
Given a worked example hint:
seats = list(reader)

for row in seats:
print(row)



CHI EA ’24, May 11-16, 2024, Honolulu, HI, USA Ruiwei Xiao, Xinying Hou, and John Stamper

B.5.1  Example Aligned bottom-out Hint. When the bottom-out hint provides consistent amount and content of information than the worked
example hint.
data = list(reader)
for row in data:
# print row to see the structure and content of each row

B.5.2 Example Not Aligned bottom-out Hint. When the bottom-out hint provides inconsistent amount or content of information than the
worked example hint.
data = list(reader)
for row in data:
for flavor in row:
if flavor in best_sellers:
best_sellers['flavor'] += 1
else:
best_sellers['flavor'] = 0



	Abstract
	1 Introduction
	2 Related Work
	2.1 Hint delivery in traditional intelligent programming tutors
	2.2 LLM-Based Intelligent Programming Tutors

	3 LLM Hint Factory
	4 Method
	5 Results
	5.1 Overall Hint Quality in the LLM Hint Factory
	5.2 The Effectiveness of Different Levels of Programming Hints for Supporting Novices

	6 LIMITATIONS
	7 Discussion
	7.1 Design Suggestion 1: Personalize the help response design under different circumstances
	7.2 Design Suggestion 2: Design semi-structured help-seeking interaction for flexibility and convenience

	8 Conclusion
	References
	A Prompt for each level of hint
	A.1 Example student's current code state
	A.2 Orientation Hint
	A.3 Instrumental Hint
	A.4 Worked Example Hint
	A.5 Bottom-Out Hint

	B Example of good and bad hints for each criteria
	B.1 Appropriate
	B.2 Target
	B.3 Comprehensible
	B.4 Encouragement
	B.5 Alignment


