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Abstract

Increasingly, student work is being conducted on computers and online, producing

vast amounts of learning‐related data. The educational analytics fields have produced

many insights about learning based solely on tutoring systems' automatically logged

data, or “log data.” But log data leave out important contextual information about

the learning experience. For example, a student working at a computer might be

working independently with few outside influences. Alternatively, he or she might

be in a lively classroom, with other students around, talking and offering suggestions.

Tools that capture these other experiences have potential to augment and complement

log data. However, the collection of rich, multimodal data streams and the increased

complexity and heterogeneity in the resulting data pose many challenges to

researchers. Here, we present two empirical studies that take advantage of multimodal

data sources to enrich our understanding of student learning. We leverage and extend

quantitative models of student learning to incorporate insights derived jointly from data

collected in multiple modalities (log data, video, and high‐fidelity audio) and contexts

(individual vs. collaborative classroom learning). We discuss the unique benefits of

multimodal data and present methods that take advantage of such benefits while easing

the burden on researchers' time and effort.
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1 | INTRODUCTION

Student work is increasingly conducted on computers and online,

producing vast amounts of learning‐related data. At the same time,

advances in computing, data mining, and learning analytics are provid-

ing new tools for the collection, analysis, and representation of this

data. Together, the available data and analytical tools enable smart

and responsive systems with strong potential to personalize learning

experiences for individual learners.

At a basic level, we can access data logged by computer systems,

which provides indicators of students' behaviours within the system,

such as time spent on screens or modules, keystrokes, and responses
wileyonlinelibrary.co
to questions or problems. We have gained many insights into learning

behaviour through analyses of tutoring systems' software‐logged data,

or “log data.” Ideally, such data will be used to create a rich picture of

student knowledge and learning processes as they unfold across time

(e.g., Graesser, Conley, & Olney, 2012). There is more to the learning

experience, however, than can be revealed from log data alone. For

example, a student working at a computer might be working indepen-

dently with few outside influences. Alternatively, he or she might be in

a lively classroom, with other students around him or her, talking and

even offering suggestions. Data that capture these other experiences

have potential to augment and complement log data. In some cases,

these additional data may lead to critical insights.
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In practice, however, the increased complexity of data resulting from

adding new, multimodal data streams from different sources can create

many challenges. These data are often collected at different grain sizes,

which are difficult to integrate. Making sense of data at many levels of

analysis, including the most detailed levels, is highly time‐consuming.

Imagine trying to understand the detailed sequence of events a student

exhibits as he or she engages in productive struggle with a difficult

concept and the social interactions surrounding this struggle. To fully

understand the events that unfold even in this small segment of a

student's educational experience, a researcher may need towatch screen

video data, listen to the audio dialogue several times, and enter

behavioural codes into a separate document. Having to do this for every

problem and concept students experience over the course of even one

class period of learning technology use would be vastly taxing on human

time and effort. Yet this level of detailed analysis provides interesting and

temporally rich insights (Worsley, 2014), in contrast to purely quantitative

models based solely on coarse‐level “correctness” coding. Despite the

challenges, progress is being made on ways to integrate multimodal

streams of data (Blikstein, 2013; Blikstein & Worsley, 2016).

In this paper, we present two empirical studies that use multi-

modal data sources to enrich our understanding of student learning.

We leverage and extend quantitative models of student learning to

incorporate insights derived jointly from streams of data collected in

multiple modalities (log data, video, and high‐fidelity audio) and

contexts (individual vs. collaborative classroom learning). We aim to

develop more robust and predictive models of student learning and

behaviour. These enhanced, multimodal models provide a more holis-

tic picture about learners and potential success factors for learning.

We also address some critical questions of interest to the fields of

educational research, educational data mining, learning analytics, and

the learning sciences: What types of learning phenomena can we

capture and trace with computer‐collected data, and what types do

we miss? And are there ways we can enrich computer‐collected data

by collecting and analysing multimodal data streams, without a

massive additional demand on researchers' time and effort?
2 | STUDY 1: CHEMISTRY VIRTUAL LAB
TUTOR WITH CAMTASIA VIDEO
RECORDINGS

Study 1 data were collected from a classroom study, in which students

engaged in a Chemistry “Virtual Lab” tutoring system. ChemVLab+

(chemvlab.org) provides a set of high school chemistry activities

designed to build conceptual understanding and inquiry (Davenport,

Rafferty, Karabinos, & Yaron, 2015; Davenport, Rafferty, Yaron,

Karabinos, & Timms, 2014). Conceptual understanding in chemistry

requires students to connect quantitative calculations, chemical

processes at the microscopic level (e.g., atoms and molecules), and

outcomes at the macroscopic level (e.g., concentrations, colour,

and temperature). ChemVLab+ activities are designed to help students

connect procedural knowledge of mathematical formalisms with

authentic chemistry learning by allowing them to design and carry out

experiments. In each activity, students work through a series of tasks

to solve an authentic problem and receive immediate, individualized

tutoring. As students work, teachers are able to track student progress
throughout the activity and assist students that may be lagging behind.

Upon completion of the activities, students receive a report of their

proficiency on targeted concepts and skills, and teachers can view

summary reports that show areas of mastery or difficulty for their

students. In the current study, students completed four activities—

PowderAde: Using Sports Drinks to Explore Concentration and

Dilution, The Factory: Using a City Water System to Explore Dilution,

Gravimetric Analysis, and Bioremediation of Oil Spills.

There are a variety of types of interfaces across the four modules,

but students spend a significant portion of their time working in open‐

ended activities such as setting up experiments in a “virtual” laboratory

environment (e.g., Figure 1) and making observations.
2.1 | Data collection

Participants were 59 students at a high school in the greater Pitts-

burgh area enrolled in honors chemistry classes. They participated in

four stoichiometry activities of the ChemVLab+ educational tutor.

They completed these activities across four 50‐min class periods

spread over the course of 3 weeks. Before students engaged with

ChemVLab+, they completed paper pretest assessments. After the

four class periods devoted to using the tutoring system, students

completed paper posttest assessments.

Using Camtasia, we collected screen video captures for 47

consenting students during the second and fourth class periods of the

study. These multimodal data streams covered the second and fourth

ChemVLab+ activities (The Factory: Using a CityWater System to Explore

Dilution and Bioremediation of Oil Spills, respectively) for the majority of

students. Student‐facing webcam data were additionally collected from a

subset of 25 students who consented to additional recording in addition

to the screen video recording. All of the video recordings were initially

stored as Camtasia project files but were then exported to MP4 format.

There was one video file for each student for each class period, and this

video file contained both the screen activity and the student‐facing

webcam activity (if applicable to that student). All files were labelled

with students' anonymized IDs and stored in a secured research hard

drive. In total, we collected 90 videos, each averaging about 35 min in

length, for a total of approximately 3,150 min of total video time.
2.2 | Analytic approach

The student‐centred video data captured rich and detailed student

interactions with the ChemVLab+ interface and with peers, the

teacher, and/or the experimenter. In general, however, most of

the activity captured in the videos was interactions between the

student and the interface. There was minimal dialogue, as students

were working independently the majority of the time. Because of this,

we focused our analyses on coding student behaviours as they

interacted with the tutor, within the screen video data.

One of the biggest challenges in multimodal learning analytics is

that the large volume of rich, multimodal data collected requires signif-

icant human time and effort to make sense of. To gain the most insight

from these multimodal data streams beyond what could be obtained

through automatic software‐logged data, we focused on parts of the

activities where students struggled the most. We used the software‐

http://chemvlab.org


FIGURE 1 Example interface for the experimentation portions of the ChemVLab+ tutor [Colour figure can be viewed at wileyonlinelibrary.com]
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logged data to identify these moments and then focused on these

moments to do in‐depth video analyses.

We then used a set of tools called STREAMS (Structured

TRansactional Event Analysis of Multimodal Streams) to facilitate the

integration of log data and multimodal data streams (Liu, Davenport,

& Stamper, 2016; Liu et al., 2016). These tools allow us to discover

insights that uniquely leverage the strengths of both log and

multimodal data. STREAMS supports (1) easy temporal alignment of

software‐logged usage data to any number of additional data streams

and (2) log data query‐based extraction of video segments.

The first component of STREAMS temporally aligns different

multimodal streams of data (video, audio, etc.) with log data and, con-

sequently, to each other. The tool uses the relative times between log

data events, combined with the temporal offset between the logged

data and the beginning of each media stream, to accomplish the

alignment. If the temporal offset is not automatically recorded during

data collection, the system provides a command‐line‐based interface

that allows the researcher to provide the time within each media

stream at which the first software‐logged event occurred. For the

videos that we analysed, this part of the process took 30 min of

human input. The output of temporal alignment is a data frame that

contains the original log data, but with three additional columns per

synced media stream: the corresponding media stream's filename,

the start time of the event within that stream, and the end time of

the event within that stream.

The second component of STREAMS accomplishes log data

query‐based extraction of video segments. In this component, the user

can query any value of any column from the software‐logged data

(e.g., all problem steps tagged with skill X) or any combination of col-

umn values (e.g., all problem steps tagged with skill X on which the
student made an incorrect first attempt). STREAMS will then produce

a folder of extracted video segments that correspond specifically to

the events specified in that query. These video segments can then

be swiftly coded by researchers. The code for the tool is available at

github.com/ranolabar/STREAMS.

We first mined the software‐logged data to identify the single

problem screen with the highest error rate across activities. Identifying

moments with high error rates can reveal common conceptual difficul-

ties, difficulties with the tutoring interface, and students'

metacognitive strategies (Mathan & Koedinger, 2005), as these

moments showcase how students handle difficult problems that they

do not yet know how to solve.

We then used STREAMS to extract all of the relevant screen

video segments pertaining to this problem screen for students who

did not get the problem correct on the first attempt. The extracted

video data totalled approximately 188 min (just under 6% of the

total length of all video data collected). We coded the extracted video

data at multiple levels and then used these codes to address the

following questions:

• How do the students' behaviours following their initial failure with

the problem affect their later performance on problems requiring

the same concept?

• How do the students' behaviours reveal different metacognitive

strategies, and do these strategies relate to learning outcomes?

In addition, we tested whether the insights derived from observing

and coding student behaviours during those video segments could

improve upon a baseline quantitative model based solely on the soft-

ware‐logged data.

http://github.com/ranolabar/STREAMS
http://wileyonlinelibrary.com
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2.3 | Qualitative analyses

The highest aggregate error rate, 85%, across students (Figure 2)

was found on the first task in the Bioremediation of Oil Spills

activity (http://chemvlab.org/activities/activity.php?id=4). This prob-

lem required students to create balanced chemical equations based on

an image of reactions that occur when two solutions are combined.

Chemical equations describe the process of how atoms in molecules

(the reactants) recombine to form new molecules (the products). In the

chemical equation activity, the diagram labels two types of atoms, A

and B, and students need to determine what molecules existed before

the solutions were combined (the reactants) and after (the products).

The most common incorrect strategy students exhibited was

mistaking the chemical equation as describing the state of the

system (e.g., how many molecules are present in the reactant and

the product containers) as opposed to describing the process of a

reaction (e.g., the rules by which molecules combine). The videos

revealed a variety of indicators of this misconception. Many students

approached the problem by using the diagram very literally. That is,

they would count the four A and 10 B molecules in the reactant

containers and use those as coefficients for A and B on the reactant

side (on the left). They would count the four AB2 molecules in the

product container and the two leftover B molecules and use those

as the coefficients for AB2 and B on the product side (on the right).

This process was evident in the video clips as the cursor was visibly

moving over the diagram on the screen, and students could be

heard quietly counting. As the students' approach was deliberate and

coherent, the data suggest the error was due to a misconception as

an “alternative conception” (Chi, 2005), rather than a fragmented

understanding (diSessa, 1988). In other words, students appear to

have a systematic strategy, but it is not a correct one.

The video analysis also revealed that interface limitations

prevented students from making certain errors related to this miscon-

ception. If the students conceive as the chemical equation describing
FIGURE 2 The problem screen with the highest aggregate error rate acr
Chemical Reactions concept [Colour figure can be viewed at wileyonlinelib
the state of the system rather than a process of reaction, they would

count each atom in the diagram. In the diagram, there are 10

molecules of B; however, the interface does not allow two‐digit

coefficients. The inability to respond with a two‐digit number indi-

cated to students that the purely visual strategy was not correct. This

was evidenced in the videos: Of the 39 videos in which students did

not succeed on their first attempts at this problem, in 22 video seg-

ments, we observed the student type “1” and repeatedly hitting

another key while being frustrated that it would not show up in the

text box. In one video, a student is seen initiating dialogue with a

nearby peer in which he says “Do you know why it won't take 10?

[inaudible peer response] But there's 10 of them!”
2.4 | Video‐coded behaviour produces quantitative
modelling improvements

On the basis of these qualitative observations, we coded for the pres-

ence of certain common behaviours in the video segments. These

behaviours are summarized in Table 1. The coding scheme was binary,

indicating the presence or absence of each behaviour for each

student. Two researchers independently coded the data based on a

prior agreed‐upon description of evidence of each behaviour

(Table 1, right column). Any disagreements in coding for an individual

behaviour were then discussed by both researchers until an agree-

ment was reached.

We then investigated whether the insights derived from these

coded behaviours would improve upon a baseline quantitative model

based solely on the software‐logged data. As a baseline model for this

comparison, we used the additive factors model on data from the Bio-

remediation of Oil Spills activity, which contained the problem screen

of interest. The additive factors model is a logistic regression model

that extends the Rasch model from item response theory (Rasch,

1993) by incorporating a growth/learning term (Cen, Koedinger, &

Junker, 2006; Draney, Wilson, & Pirolli, 1996; Spada & McGaw,
oss all activities. This problem required the application of the Balance
rary.com]

http://chemvlab.org/activities/activity.php?id=4
http://wileyonlinelibrary.com


TABLE 1 Behaviours coded for in the video analysis and the evi-
dence that constituted coding the presence of each behaviour

Behaviour Evidence of behaviour

“Literal” misconception Student attempting 4A +
10B → 4AB + 2B or similar
variants (such as 4A + 5B +
5B → 4AB + 2B upon
discovering the interface
one‐digit limitation)

Student counting the molecules
in the diagram with mouse

Attempting a “10” coefficient
for B on the reactants side

Student typing a “1” into the
coefficient box followed by
audible keystrokes that do
not register in the field

Any verbal acknowledgement
of trying to attempt “10” in
the box

Leftover molecule
misconception

Student officially types a response
with any coefficient for B,
including both submitted
(software‐logged) and
nonsubmitted responses

Removed leftover molecules Student removes a leftover molecule
(B coefficient) from a prior attempt
prior to reaching a bottom‐out hint

Reach unreduced equation Student arrives at an unreduced‐
coefficients version of the correct
balanced reaction (e.g., 4A +
8B → 4AB2) prior to reaching
a bottom‐out hint

Bottom‐out hint Student reaches a bottom‐out
hint on either the reactant
or product side

External dialogue Student arrives at the answer
with outside‐of‐tutor intervention
(either by asking the teacher, the
experimenter, or a peer)

TABLE 2 Comparative model fits based on AIC and BIC, likelihood‐
based measures of predictive fit that penalize for model complexity.
For both criteria, lower numbers indicate a better relative mode

Model AIC BIC

Baseline 1,085.959 1,115.241

Baseline + Balancing Chem
Reactions concept split
by success on problem
with highest error rate

1,064.283 1,093.565

Baseline + Balancing Chem
Reactions concept split
by success on problem with
highest error rate and
video‐coded activity

1,058.018 1,087.3

Note. AIC: Akaike information criterion; BIC: Bayesian information
criterion.

LIU ET AL. 103
1985). It models the probability that a given student will get a problem

correct on his or her first attempt based on estimates of the student's

ability, the difficulty of the concept(s) required on each problem, and

the improvement in that concept with each problem the student is

required to apply it. We used R (R Team, 2014) and the package

lme4 to construct a linear mixed effects (LMEs) model implementation

for the additive factors model and to obtain the Akaike information

criterion (AIC) and Bayesian information criterion (BIC) metrics

reported here.

The problem screen of interest was the first problem on which

students had to apply the Balancing Chemical Reactions concept

within the Bioremediation of Oil Spills activity. We sought to discover

whether splitting the students into groups based on their video‐coded

activity would improve the model's prediction of subsequent perfor-

mance on problems involving the Balancing Chemical Reactions con-

cept. To this end, we test several variations on the baseline model

using the video‐coded behaviours to group students, to discover

which video‐coded features produced significant improvements to

the model's goodness‐of‐fit to the data. Goodness‐of‐fit was mea-

sured using AIC and BIC. Both criteria are likelihood‐based measures

of predictive fit that penalize for model complexity. For both criteria,

lower numbers indicate a better relative model fit.

The top row of Table 2 shows the fit of the baseline additive fac-

tors model to the data from the Bioremediation of Oil Spills activity.
The best improvement to this baseline model was generated by split-

ting students who incorrectly attempted the video‐coded Balancing

Chemical Reactions problem (Figure 1) based on whether they

received information about the correct answer (either through exter-

nal dialogue or by seeing a bottom‐out hint that provided the answer),

or not. This model's fit‐to‐data is shown in the bottom row of Table 2

and shows a substantial drop in both AIC and BIC, indicating a better

model fit.

Because this split was not applicable to students who got the

problem right on their first attempt, these students were treated as

a separate group. A more stringent baseline model, which just split

students based on their first‐attempt correctness on the problem

screen of interest, was included as an additional control (second row

of Table 2). The model with an additional split for video coded

data (bottom row of Table 2) fit better yet than this more stringent

control model.

Figure 3 shows the aggregate learning trajectories of students

classified into each of the three groups: correct on first attempt

(green), incorrect on first attempt and required either a bottom‐out

hint (BOH) or external dialogue to reach the answer (red), or incorrect

on first‐attempt and did not require either to reach the answer (blue).

Though there is some fluctuation between the relative performance of

correct on first attempt (green) and incorrect on first attempt and did

not require BOH or external dialogue (blue) at problems 1–4, the

differences are not significant.

These results show that, among students who incorrectly

attempted the first Balancing Chemical Reactions problem, students

who received external information about the correct answer, through

either external dialogue or a bottom‐out hint (Figure 3, red line), before

submitting the correct answer had slower learning trajectories with

ultimately lower performance across the board on the Balancing Chem-

ical Reactions skill. One possible explanation for this finding is that stu-

dents who reached the correct answerwithout either of these activities

engaged in productive struggle (also referred to as productive failure;

Kapur, 2010, 2012). Engaging in productive struggle without resorting

to assistance that guides directly to the correct answer has proven

particularly effective for learning in some difficult problem‐solving

contexts (Kapur, 2012). Productive struggle may help students become

aware of their knowledge gaps, which eases the process of repairing

their misconceived mental models.



FIGURE 3 Aggregate learning trajectories of students classified into
each of the three groups: correct on first attempt, incorrect on first
attempt and required either a bottom‐out hint (BOH) or external
dialogue to reach the answer, or incorrect on first attempt [Colour
figure can be viewed at wileyonlinelibrary.com]
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An alternative explanation might be that students who reached

solutions without many hints had a couple of potential solutions in

mind and simply realized (after getting feedback from the system) that

their initial approach was incorrect. However, this interpretation is

unlikely as the video clips showed a very common progression of

errors from the initial attempt to the correct attempt. This progression

indicates students did not initially understand that the chemical reac-

tion describes a process, rather than the state of the system. Specifi-

cally, students began by counting the number of molecules present

in the reactant and product containers (“literal” misconception) and/

or attempted to type in a “10” coefficient for B on the reactants side

as opposed to describing the process of a reaction (e.g., attending to

which new molecules are being formed). Next, students typically

progressed to exhibiting evidence of the error of not understanding

that leftover molecules are not part of the reaction by typing a

response with any coefficient for B on the products side (leftover mol-

ecule misconception or removed leftover molecules on Table 1).

Finally, students progressed to realizing that they needed to present

the equation with coefficient values simplified (i.e., A + 2B = AB2

rather than 4A + 8B = 4AB2). Sixty percent of students who produced

an error on their first attempt did not reach a bottom‐out hint and did

not receive external assistance exhibited this specific progression of

errors. This provides further evidence that students were struggling

with creating a correct understanding (without being handed the cor-

rect answer) along the way.

Although the detailed video coding focused on one specific prob-

lem out of the entire set of ChemVLab+ activities, the moments where

students solve this problem were impressively revealing of rich details

about their learning and help‐seeking behaviours. Furthermore, using

the video‐coded information in conjunction with quantitative
modelling allowed us to identify features that uniquely predict subse-

quent learning trajectories for the concept of interest. The study pro-

vides evidence that analysing multimodal data even during limited

moments of student activity can lead to unique insights—that log data

would not have been able to provide—with implications for quantita-

tive modelling of subsequent learning trajectories.

To further test the power of multimodal models for identifying

critical information about learners and isolating potential success fac-

tors, we carried out an additional study using a highly collaborative

math‐based tutor with elementary students. Though the multimodal

data available were very different, our research questions remained

the same, that is, what types of learning phenomena can we capture

and trace with computer‐collected data, and what types do we miss?

And are there ways we can enrich computer‐collected data by

collecting and analysing multimodal data streams, without a massive

additional demand on researchers' time and effort?
3 | STUDY 2: COLLABORATIVE FRACTION
TUTOR WITH HIGH‐FIDELITY AUDIO
RECORDINGS

Study 2 data were collected from a classroom study of students work-

ing on the Collaborative Fraction Tutor (Olsen, Belenky, Aleven, &

Rummel, 2014; Olsen, Aleven, & Rummel, 2015), an intelligent

tutoring system developed by researchers at Carnegie Mellon Univer-

sity that helps students become better at understanding and working

fractions. The tutor was created using Cognitive Tutor Authoring

Tools, which facilitate rapid development and easy deployment of

intelligent tutors. The tutor supports collaboration between student

partners to learn fraction skills such as addition (Figure 4), subtraction,

comparing fractions to determine which is larger or smaller, finding the

least common denominator, and finding equivalent fractions. The

tutor's effectiveness has been demonstrated in prior classroom

deployment studies (Rau, Aleven, & Rummel, 2009; Rau, Aleven,

Rummel, & Rohrbach, 2012). These studies showed that students' mis-

takes decrease as they progress through the tutor; students score

higher on a fractions test after using the tutoring system compared

with before; and scores remain higher than pretutoring a week after

they have finished using the tutoring system.

Although each student worked on the tutoring system on his or

her own computer screen, each student in a pair could control only

part of the screen. The students needed to work together to finish

the problem (i.e., one student could not do everything). Students

worked together at the same time and, ideally, talked about what they

were doing, asked for help from their partner, defended a position or

explained why they thought something was the correct answer, and

built off of each other's contributions.

All collaborative dyads randomly received a problem set focused on

either procedural or conceptual knowledge building. The procedural ver-

sus conceptual comparison had been included to investigate whether

there were any interactions between collaborative learning and type of

knowledge acquired. Figure 4 shows one example of each type of prob-

lem, conceptual and procedural. The top and bottom panels show exam-

ple problems from the conceptual and procedural knowledge conditions,

http://wileyonlinelibrary.com
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respectively. The figure depicts correctly completed screens; student‐

input fields are marked with either green text or borders.
3.1 | Data collection

Participants were 104 fourth and fifth graders from two schools in the

greater Pittsburgh area. There were 19 fifth graders from one
FIGURE 4 Example interface for the “Adding Fractions” skill in the co
conceptual condition. The bottom panel shows the interface for the proced
classroom of one school and 50 fourth graders and 35 fifth graders

from the second school. Of these, only a subset of students were pres-

ent for the full study, had the same partner during the entire study (no

absences for either individual), and consented to audio recording of

their dialogue. For consistency purposes, we only analysed data from

students who fit all of these criteria. Thus, our analyses were con-

ducted on this subset of 36 students (14 fifth graders from the first
llaborative fraction tutor. The top panel shows the interface for the
ural condition [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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school and 16 fourth graders and six fifth graders from the other

school). There were 15 males and 21 females in the analysis subset.

Student pairs were determined by the teachers. Teachers were asked

to pair each student with a partner with whom they would get along

and who was at a similar knowledge level.

The study took place over five consecutive days. On the first day,

students individually took a pretest to establish their baseline fractions

knowledge. In the following 3 days, students worked through the

tutoring system with a partner. On the last day, students individually

took a posttest that also tested fractions knowledge, with content

similar to the pretest.

For the consenting students, high‐quality audio data were

collected for each individual student using a headset outfitted with a

microphone. The microphone was linked to a tablet computer to store

the recordings. In each class, we additionally collected full‐classroom

video recorded from one camera located in the corner of the room.
3.2 | Analytic approach

Due to the collaborative nature of the learning experience, we antic-

ipated that dialogue would be plentiful and that much of the inter-

esting and rich learning phenomena would be captured in this

dialogue. By transcribing the high‐fidelity audio data collected

through headset microphones and using automated natural language

processing (NLP) tools, we were able to make use of large quantities

of dialogue data without direct coding by human researchers. NLP

involves the automatic extraction of linguistic features using a

computer programming language. NLP has the potential to provide

information about language at multiple levels and dimensions

(Graesser & McNamara, 2011). Thus, as an initial pass at analysing

these data, we took the approach of applying NLP analyses to the

transcribed dialogue data.

In particular, we focused on whether linguistic factors related to

lexical sophistication, cohesion, and affect present in students' collab-

orative dialogue predict unique variance in math performance beyond

what is accounted for by nonlinguistic factors.
3.3 | Analyses

3.3.1 | Transcription

First, we temporally synced the recordings between the two members

of each dyad and merged them so that professional transcribers would

work off of one recording for each dyad's conversation. A professional

transcriber transcribed each of the speech samples collected from the

participants. The transcriptions contained the speaker's words, some

metalinguistic data (singing, laughing, and sighing), and filler words

(e.g., ummm and ahhhh). Disfluencies that were linguistic in nature

(e.g., false starts, word repetition, and repairs) were also retained. If

any portion of the audio was not able to be transcribed, the words

were annotated with either an underscore or the flag “INAUDIBLE”

depending on the transcriptionist. The files were cleaned so that meta-

linguistic data, filler words, and portions unable to be transcribed were

removed prior to analysis.
3.3.2 | Linguistic variables

Transcripts were separated by learner and cleaned to remove all

nonlinguistic information including metadata and nonlinguistic vocali-

zations such as coughs and laughs. Each transcript was run through

three NLP tools: theTool for the Automatic Analysis of Lexical Sophis-

tication (TAALES; Kyle & Crossley, 2015), the Tool for the Automatic

Analysis of Cohesion (TAACO; Crossley, Kyle, & McNamara, 2016),

and the SEntiment ANalysis and Cognition Engine (SEANCE; Crossley,

Kyle, & McNamara, 2017). These tools report on language features

related to lexical sophistication, text cohesion, and sentiment analysis,

respectively. These are discussed briefly below.

TAACO indices

TAACO incorporates over 150 classic and recently developed indices

related to text cohesion. For many indices, the tool incorporates a part

of speech (POS) tagger and synonym sets. The POS tagger allows

TAACO to report on indices of cohesion that are specific to content

words such as nouns, verbs, and adjectives. As well, TAACO provides

linguistic counts for both sentence and paragraph markers of cohe-

sion. Specifically, TAACO calculates sentence overlap indices for

words and lemmas, paragraph overlap indices for words and lemmas,

and a variety of connective indices such as sentence linking connec-

tives (e.g., nonetheless, therefore, and however).

TAALES indices

TAALES incorporates about 150 indices related to basic lexical infor-

mation (e.g., type and token counts for both content and function

words), lexical frequency (i.e., how frequent words are), psycholinguis-

tic word information (e.g., concreteness and meaningfulness),

academic language for both single word and multiword units (i.e., aca-

demic word and formula lists), and word polysemy (i.e., the number of

senses a word has) and hypernymy (the specificity of a word).

SEANCE indices

SEANCE is a sentiment analysis tool that relies on a number of pre‐

existing sentiment, social positioning, and cognition dictionaries.

SEANCE contains a number of predeveloped word vectors taken from

freely available source databases that were developed to measure

sentiment, cognition, and social order. For many of these vectors,

SEANCE also provides a negation feature (i.e., a contextual valence

shifter) that ignores positive terms that are negated (e.g., not happy).

SEANCE also includes a POS tagger. A number of these vectors have

been combined use statistical analyses to create component scores

that relate to large sentiment, social positioning, and cognition

construct (e.g., terms related to respect).
3.3.3 | Statistical analyses

We first conducted a paired samples t test between students' pretest

and posttest scores to assess evidence of learning from the collabora-

tive fraction tutor. We then conducted LME models to determine if

linguistic features in the students' language output, along with other

fixed effects, successfully predicted students' pretest and posttest

math scores. Thus, the LME model modelled the pretest and posttest

results in terms of random or within‐subjects factors (i.e., repeated
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variance explained by the students as they moved through the

intervention longitudinally) and fixed or between‐subjects factors

(e.g., the linguistic features in their transcripts, gender, age, and

school). Such an approach allows us to examine math growth over

time for individual learners using random factors and to investigate if

individual differences related to the learner such as demographic

information, age, and linguistic ability predict math development.

We used R (R Team, 2014) for our statistical analysis and the

package lme4 to construct LMEs models. We also used the package

lmerTest to analyse the LME output and derive p values for individual

fixed effects. We used stepwise variable selection for the final linguis-

tic model, and interpretation of the model was based on t and p values

for fixed effects and visual inspection of residuals distribution. To

obtain a measure of effect sizes, we computed correlations between

fitted and predicted residual values, resulting in an R2 value for both

the fixed factors and the fixed factors combined with the random fac-

tor (i.e., the repeated participant data from the pretest and the

posttest).

We first developed a baseline model that included gender, grade,

condition, and school as fixed effects and participants as random

effect. We next developed a full model that included gender, grade,

condition, and school as fixed effects along with linguistic features

and participants as random effects.
3.4 | Results

3.4.1 | Math gains

A paired t test examining differences between the pretest and the

posttests scores indicated significant differences between the pretest

(M = 0.469, SD = 0.170) and the posttest (M = 0.603, SD = .185);

t(35) = 5.988, p < 0.001. Overall, students improved in their

knowledge of fraction concepts and procedures after engaging with

the collaborative tutoring system.
TABLE 4 Full model for predicting math scores

Fixed effect Coefficient
Std.
error t p

(Intercept) 0.557 0.055 10.106 <0.001

Gender (male is contrast) 0.007 0.057 0.121 0.905
3.4.2 | Baseline model

A baseline model considering all fixed effects aside from linguistic

revealed no significant effects on math scores. Table 3 displays the

coefficients, standard errors, t values, and p values for each of the

nonlinguistic fixed effects. Inspection of residuals suggested the model

was not influenced by homoscedasticity. The nonlinguistic variables

explained around 2% of the variance (R2 = 0.016), whereas the fixed

and random variables together explained around 55% of the variance

(R2 = 0.553). Thus, the majority of change found in the pretest and

posttest was due to time.
TABLE 3 Baseline model for predicting math scores

Fixed effect Coefficient Std. error t p

(Intercept) 0.564 0.059 9.543 <0.001

Gender (male) −0.039 0.061 −0.650 0.521

Grade (5) −0.029 0.082 −0.350 0.729

Condition (procedural) −0.024 0.060 −0.397 0.694

School 0.038 0.086 0.436 0.666
3.4.3 | Full model

A full model was developed including the nested baseline model and

linguistic fixed effects. The model included five linguistic features

related to cohesion (sentence linking connectives and adjacent overlap

of adjectives), affect (respect terms), and lexical proficiency (number of

function word types and verb hypernymy). None of the variables

showed suppression effects. The model indicated that a greater

number of sentence linking connectives (e.g., nonetheless, therefore,

and however), function word types (e.g., prepositions, connectives,

and articles), and overlap of adjectives predicted higher math scores.

Conversely, more respect terms and greater use of more specific

words (i.e., greater hypernymy scores) related to lower math scores.

Table 2 displays the coefficients, standard errors, t values, and p values

for each of the fixed effects ordered by strength of t value. A log like-

lihood comparison revealed a significant difference between the base-

line and full models, χ2(2) = 42.486, p < 0.001, indicating that the

inclusion of linguistic features contributed to a better model fit.

Together, the fixed factors including the linguistic and nonlinguistic

variables explained around 30% of the variance (R2 = 0.303), whereas

the fixed and random variables combined to explain around 82% of

the variance (R2 = 0.823).

The full model LME model demonstrated that a number of linguis-

tic features were significant predictors of math performance (Table 4).

Specifically, a greater number of sentence linking connectives and

function words were predictive of math performance. These findings

indicate that math performance is likely linked with the production

of more complex syntactic structures such as those found in coordi-

nated sentences and sentences with more structural components

(i.e., function words). Lexically, math performance is associated with

the production of more abstract words (i.e., words with greater

hypernymy scores). This may be due to the fact that math solutions

often require abstract thinking. In addition, a greater overlap of adjec-

tives between sentences is a strong predictor of math performance,

likely due to the repetition of math adjectives such as “greater than”

and “less than.” Lastly, our analysis demonstrated that math perfor-

mance was related to the use of fewer words related to respect. This

finding seems counter‐intuitive, but performance within a math

tutoring system that requires collaboration and timed completion of

problems may favour curt and direct discourse between participants
Grade (fifth grade is contrast) −0.021 0.077 −0.284 0.778

Condition (procedural
content is contrast)

−0.036 0.057 −0.639 0.527

School 0.032 0.080 0.401 0.691

Sentence linking connective 0.059 0.018 3.246 <0.001

Number of function word types 0.044 0.0193 2.273 <0.050

Respect words −0.032 0.013 −2.518 <0.050

Adjacent overlap of adjectives 0.039 0.015 2.549 <0.050

Verb hypernymy −0.038 0.017 −2.265 <0.050
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that may be interpreted as less respectful. In total, the linguistic

factors explained about 28% of the variance in the math performance

data over and above the 2% explained by the nonlinguistic factors.

These linguistic analyses provide strong evidence that multimodal

data streams focused around dialogue can provide unique insights that

dramatically improve quantitative predictions of learning outcomes.

Importantly, these findings also provided a greater understanding of

how language features within student output can explain math perfor-

mance indicating that language proficiency is likely linked to math pro-

ficiency. This link may be related to language skills that specifically

help students discuss and analyse mathematical principles. The link

may also reflect some general cognitive proficiencies that underlie

both math and language skills. This proficiency may be related to ana-

lytic ability or an ability toward conceptual knowledge, both of which

would assist in learning language and math. In all cases, the findings

aid in our understanding of student learning by demonstrating links

between different knowledge domains.

Our NLP analyses also provide a more holistic picture of learners

that goes beyond what we can infer from log data. The majority of

educational analytic research relies on features calculated from the

log data recorded in intelligent tutoring systems and massive online

open courses, such as video views, forum post reads, and assignment

attempts (Baker & Inventado, 2014). Additional approaches to

assessing student performance include the use of individual difference

measures such as demographics, content knowledge, and literacy skills

(DeBoer, Ho, Stump, & Breslow, 2014) although even these are rare in

educational analytics. Here, we provide a different approach that goes

beyond log data and provide the opportunity to examine individual

differences in learners that provide a richer assessment of cognitive

performance. By measuring language production features in learners,

we can better assess individual differences that tap into cognitive

production and likely increase the sensitivity of learner feedback

algorithms by providing data approaches that go beyond log data.
4 | GENERAL DISCUSSION

We presented two empirical studies, collected in classroom studies

with two distinct learning technology systems in different contexts

(individual and collaborative). Our analyses and findings showcase a

few different ways, in which multimodal data sources can enrich our

understanding of student learning and provide a more holistic picture.

The two studies illustrated different types of multimodal data

streams collected alongside automatically software‐logged data. In

Study 1, we collected student‐focused screen and webcam video. This

was useful for understanding students' learning processes and

approaches based on detailed analyses of their interactions with the

tutor interface, mouse movements, and out‐of‐tutor (in person)

help‐seeking. In Study 2, we collected high‐fidelity audio of students'

collaborative dialogue during their use of a fraction tutor designed to

support collaboration between pairs of students. Because this

classroom activity was dialogue heavy, and we collected audio using

microphone headsets outfitted for each individual student, we were

able to get high‐quality transcriptions of students' dialogue and apply

an NLP approach to make use of the large quantity of audio dialogue.
The verbal data allowed us to identify linguistic features in students'

collaborative dialogue that were highly predictive of math perfor-

mance on pretest and posttest assessments, above and beyond any

nonlinguistic variables.

Reflecting upon our results, we return to our initial questions of

interest:

What types of learning phenomena can we capture and trace with

computer‐collected data, and what types do we miss? The video coding

of student behaviours in Study 1 suggested that hint usage was a

significant proxy into help‐seeking behaviours that predict overall

learning gains. Some of this information is available in log data, and

one lesson learned is that we may gain insights by putting more

effort into automatically quantifying hint usage behaviour. Addition-

ally, we learned that log data misses all out‐of‐tutor interaction, and

dialogue, and we found both to add significantly to the learning pic-

ture. Finally, log data also miss “mouse gestures” and other activity

that is no longer present in the interface when students submit their

answer. In some cases, this activity is very revealing of both common

student misconceptions and tutor interface limitations. The linguistic

analyses in Study 2 suggest that a lot of rich information is present in

students' language during dialogue, and this linguistic information

adds significantly to our understanding of students' cognitive and col-

laborative abilities. The studies also show how behaviours that may

help learning in one context can hinder learning in another context.

For instance, in Study 1, students seeking outside assistance from

peers had negative effects on learning, whereas in Study 2, students

collaborating had positive effects. These studies differed in numerous

ways (student population, type of the tutor, and subject matter), and

the differences reveal that enforcing productive collaboration (as in

Study 2) may be more effective than spontaneous collaboration (as

in Study 1), in which the assistance most often involved giving the

other student the correct answer.

Are there ways we can enrich computer‐collected data by collecting

and analysing multimodal data streams, without a massive additional

demand on researchers' time and effort? Both studies showcased the

common multimodal learning analytics challenge of dealing with a

large quantity of rich data with limited human time available. We

addressed this challenge in different ways depending on what could

be done with the available data, as well as what was useful given

the learning context (individual vs. collaborative/interactive). For the

chemistry study, we focused on moments of special interest and doing

in‐depth video coding of multimodal data for just these moments. We

leveraged the information available in the log data to find these seg-

ments of video that seemed worthy of focus. For the collaborative

fraction tutor, we applied automated linguistic analysis techniques to

help discover linguistic features of student dialogue that predicted a

substantial amount of unique variance in math performance.

There is no one‐size‐fits‐all method for making use of the richness

present in multimodal data while easing the burden on human time

and effort. A careful analysis of the educational domain, the context

(classroom vs. other and individual vs. interactive), and what the

practical constraints are can help guide researchers to decide which

multimodal streams to focus on collecting and how to make the best



LIU ET AL. 109
use of the additional streams. Here, we have showcased some distinct

methodological approaches that we found useful and enriching for

learning occurring in different educational domains and in different

contexts. Both studies and methodological approaches yielded differ-

ent kinds of insights about student learning as well as quantitative

model improvements uniquely beyond what was possible to infer

from the log data. As a result, these new models of learning can be

used to generate actionable knowledge for systems, students,

teachers, and researchers.
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